GNU Radio 3.6.5 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2009,2010 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 00024 #ifndef INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H 00025 #define INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H 00026 00027 #include <gr_core_api.h> 00028 #include <gr_block.h> 00029 00030 class gr_pfb_clock_sync_ccf; 00031 typedef boost::shared_ptr<gr_pfb_clock_sync_ccf> gr_pfb_clock_sync_ccf_sptr; 00032 GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw, 00033 const std::vector<float> &taps, 00034 unsigned int filter_size=32, 00035 float init_phase=0, 00036 float max_rate_deviation=1.5, 00037 int osps=1); 00038 00039 class gr_fir_ccf; 00040 00041 /*! 00042 * \brief Timing synchronizer using polyphase filterbanks 00043 * 00044 * This block performs timing synchronization for PAM signals by 00045 * minimizing the derivative of the filtered signal, which in turn 00046 * maximizes the SNR and minimizes ISI. 00047 * 00048 * This approach works by setting up two filterbanks; one filterbank 00049 * contains the signal's pulse shaping matched filter (such as a root 00050 * raised cosine filter), where each branch of the filterbank contains 00051 * a different phase of the filter. The second filterbank contains 00052 * the derivatives of the filters in the first filterbank. Thinking of 00053 * this in the time domain, the first filterbank contains filters that 00054 * have a sinc shape to them. We want to align the output signal to be 00055 * sampled at exactly the peak of the sinc shape. The derivative of 00056 * the sinc contains a zero at the maximum point of the sinc (sinc(0) 00057 * = 1, sinc(0)' = 0). Furthermore, the region around the zero point 00058 * is relatively linear. We make use of this fact to generate the 00059 * error signal. 00060 * 00061 * If the signal out of the derivative filters is d_i[n] for the ith 00062 * filter, and the output of the matched filter is x_i[n], we 00063 * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} + 00064 * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error in 00065 * the real and imaginary parts. There are two reasons we multiply by 00066 * the signal itself. First, if the symbol could be positive or 00067 * negative going, but we want the error term to always tell us to go 00068 * in the same direction depending on which side of the zero point we 00069 * are on. The sign of x_i[n] adjusts the error term to do 00070 * this. Second, the magnitude of x_i[n] scales the error term 00071 * depending on the symbol's amplitude, so larger signals give us a 00072 * stronger error term because we have more confidence in that 00073 * symbol's value. Using the magnitude of x_i[n] instead of just the 00074 * sign is especially good for signals with low SNR. 00075 * 00076 * The error signal, e[n], gives us a value proportional to how far 00077 * away from the zero point we are in the derivative signal. We want 00078 * to drive this value to zero, so we set up a second order loop. We 00079 * have two variables for this loop; d_k is the filter number in the 00080 * filterbank we are on and d_rate is the rate which we travel through 00081 * the filters in the steady state. That is, due to the natural clock 00082 * differences between the transmitter and receiver, d_rate represents 00083 * that difference and would traverse the filter phase paths to keep 00084 * the receiver locked. Thinking of this as a second-order PLL, the 00085 * d_rate is the frequency and d_k is the phase. So we update d_rate 00086 * and d_k using the standard loop equations based on two error 00087 * signals, d_alpha and d_beta. We have these two values set based on 00088 * each other for a critically damped system, so in the block 00089 * constructor, we just ask for "gain," which is d_alpha while d_beta 00090 * is equal to (gain^2)/4. 00091 * 00092 * The block's parameters are: 00093 * 00094 * \li \p sps: The clock sync block needs to know the number of samples per 00095 * symbol, because it defaults to return a single point representing 00096 * the symbol. The sps can be any positive real number and does not 00097 * need to be an integer. 00098 * 00099 * \li \p loop_bw: The loop bandwidth is used to set the gain of the 00100 * inner control loop (see: 00101 * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html). 00102 * This should be set small (a value of around 2pi/100 is suggested in 00103 * that blog post as the step size for the number of radians around 00104 * the unit circle to move relative to the error). 00105 * 00106 * \li \p taps: One of the most important parameters for this block is 00107 * the taps of the filter. One of the benefits of this algorithm is 00108 * that you can put the matched filter in here as the taps, so you get 00109 * both the matched filter and sample timing correction in one go. So 00110 * create your normal matched filter. For a typical digital 00111 * modulation, this is a root raised cosine filter. The number of taps 00112 * of this filter is based on how long you expect the channel to be; 00113 * that is, how many symbols do you want to combine to get the current 00114 * symbols energy back (there's probably a better way of stating 00115 * that). It's usually 5 to 10 or so. That gives you your filter, but 00116 * now we need to think about it as a filter with different phase 00117 * profiles in each filter. So take this number of taps and multiply 00118 * it by the number of filters. This is the number you would use to 00119 * create your prototype filter. When you use this in the PFB 00120 * filerbank, it segments these taps into the filterbanks in such a 00121 * way that each bank now represents the filter at different phases, 00122 * equally spaced at 2pi/N, where N is the number of filters. 00123 * 00124 * \li \p filter_size (default=32): The number of filters can also be 00125 * set and defaults to 32. With 32 filters, you get a good enough 00126 * resolution in the phase to produce very small, almost unnoticeable, 00127 * ISI. Going to 64 filters can reduce this more, but after that 00128 * there is very little gained for the extra complexity. 00129 * 00130 * \li \p init_phase (default=0): The initial phase is another 00131 * settable parameter and refers to the filter path the algorithm 00132 * initially looks at (i.e., d_k starts at init_phase). This value 00133 * defaults to zero, but it might be useful to start at a different 00134 * phase offset, such as the mid-point of the filters. 00135 * 00136 * \li \p max_rate_deviation (default=1.5): The next parameter is the 00137 * max_rate_devitation, which defaults to 1.5. This is how far we 00138 * allow d_rate to swing, positive or negative, from 0. Constraining 00139 * the rate can help keep the algorithm from walking too far away to 00140 * lock during times when there is no signal. 00141 * 00142 * \li \p osps (default=1): The osps is the number of output samples per symbol. By default, 00143 * the algorithm produces 1 sample per symbol, sampled at the exact 00144 * sample value. This osps value was added to better work with 00145 * equalizers, which do a better job of modeling the channel if they 00146 * have 2 samps/sym. 00147 */ 00148 00149 class GR_CORE_API gr_pfb_clock_sync_ccf : public gr_block 00150 { 00151 private: 00152 /*! 00153 * Build the polyphase filterbank timing synchronizer. 00154 * \param sps (double) The number of samples per symbol in the incoming signal 00155 * \param loop_bw (float) The bandwidth of the control loop; set's alpha and beta. 00156 * \param taps (vector<int>) The filter taps. 00157 * \param filter_size (uint) The number of filters in the filterbank (default = 32). 00158 * \param init_phase (float) The initial phase to look at, or which filter to start 00159 * with (default = 0). 00160 * \param max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5). 00161 * \param osps (int) The number of output samples per symbol (default=1). 00162 * 00163 */ 00164 00165 friend GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw, 00166 const std::vector<float> &taps, 00167 unsigned int filter_size, 00168 float init_phase, 00169 float max_rate_deviation, 00170 int osps); 00171 00172 bool d_updated; 00173 double d_sps; 00174 double d_sample_num; 00175 float d_loop_bw; 00176 float d_damping; 00177 float d_alpha; 00178 float d_beta; 00179 00180 int d_nfilters; 00181 int d_taps_per_filter; 00182 std::vector<gr_fir_ccf*> d_filters; 00183 std::vector<gr_fir_ccf*> d_diff_filters; 00184 std::vector< std::vector<float> > d_taps; 00185 std::vector< std::vector<float> > d_dtaps; 00186 00187 float d_k; 00188 float d_rate; 00189 float d_rate_i; 00190 float d_rate_f; 00191 float d_max_dev; 00192 int d_filtnum; 00193 int d_osps; 00194 float d_error; 00195 int d_out_idx; 00196 00197 /*! 00198 * Build the polyphase filterbank timing synchronizer. 00199 */ 00200 gr_pfb_clock_sync_ccf (double sps, float loop_bw, 00201 const std::vector<float> &taps, 00202 unsigned int filter_size, 00203 float init_phase, 00204 float max_rate_deviation, 00205 int osps); 00206 00207 void create_diff_taps(const std::vector<float> &newtaps, 00208 std::vector<float> &difftaps); 00209 00210 public: 00211 ~gr_pfb_clock_sync_ccf (); 00212 00213 /*! \brief update the system gains from omega and eta 00214 * 00215 * This function updates the system gains based on the loop 00216 * bandwidth and damping factor of the system. 00217 * These two factors can be set separately through their own 00218 * set functions. 00219 */ 00220 void update_gains(); 00221 00222 /*! 00223 * Resets the filterbank's filter taps with the new prototype filter 00224 */ 00225 void set_taps (const std::vector<float> &taps, 00226 std::vector< std::vector<float> > &ourtaps, 00227 std::vector<gr_fir_ccf*> &ourfilter); 00228 00229 /*! 00230 * Returns all of the taps of the matched filter 00231 */ 00232 std::vector< std::vector<float> > get_taps(); 00233 00234 /*! 00235 * Returns all of the taps of the derivative filter 00236 */ 00237 std::vector< std::vector<float> > get_diff_taps(); 00238 00239 /*! 00240 * Returns the taps of the matched filter for a particular channel 00241 */ 00242 std::vector<float> get_channel_taps(int channel); 00243 00244 /*! 00245 * Returns the taps in the derivative filter for a particular channel 00246 */ 00247 std::vector<float> get_diff_channel_taps(int channel); 00248 00249 /*! 00250 * Return the taps as a formatted string for printing 00251 */ 00252 std::string get_taps_as_string(); 00253 00254 /*! 00255 * Return the derivative filter taps as a formatted string for printing 00256 */ 00257 std::string get_diff_taps_as_string(); 00258 00259 00260 /******************************************************************* 00261 SET FUNCTIONS 00262 *******************************************************************/ 00263 00264 00265 /*! 00266 * \brief Set the loop bandwidth 00267 * 00268 * Set the loop filter's bandwidth to \p bw. This should be between 00269 * 2*pi/200 and 2*pi/100 (in rads/samp). It must also be a positive 00270 * number. 00271 * 00272 * When a new damping factor is set, the gains, alpha and beta, of the loop 00273 * are recalculated by a call to update_gains(). 00274 * 00275 * \param bw (float) new bandwidth 00276 * 00277 */ 00278 void set_loop_bandwidth(float bw); 00279 00280 /*! 00281 * \brief Set the loop damping factor 00282 * 00283 * Set the loop filter's damping factor to \p df. The damping factor 00284 * should be sqrt(2)/2.0 for critically damped systems. 00285 * Set it to anything else only if you know what you are doing. It must 00286 * be a number between 0 and 1. 00287 * 00288 * When a new damping factor is set, the gains, alpha and beta, of the loop 00289 * are recalculated by a call to update_gains(). 00290 * 00291 * \param df (float) new damping factor 00292 * 00293 */ 00294 void set_damping_factor(float df); 00295 00296 /*! 00297 * \brief Set the loop gain alpha 00298 * 00299 * Set's the loop filter's alpha gain parameter. 00300 * 00301 * This value should really only be set by adjusting the loop bandwidth 00302 * and damping factor. 00303 * 00304 * \param alpha (float) new alpha gain 00305 * 00306 */ 00307 void set_alpha(float alpha); 00308 00309 /*! 00310 * \brief Set the loop gain beta 00311 * 00312 * Set's the loop filter's beta gain parameter. 00313 * 00314 * This value should really only be set by adjusting the loop bandwidth 00315 * and damping factor. 00316 * 00317 * \param beta (float) new beta gain 00318 * 00319 */ 00320 void set_beta(float beta); 00321 00322 /*! 00323 * Set the maximum deviation from 0 d_rate can have 00324 */ 00325 void set_max_rate_deviation(float m) 00326 { 00327 d_max_dev = m; 00328 } 00329 00330 /******************************************************************* 00331 GET FUNCTIONS 00332 *******************************************************************/ 00333 00334 /*! 00335 * \brief Returns the loop bandwidth 00336 */ 00337 float get_loop_bandwidth() const; 00338 00339 /*! 00340 * \brief Returns the loop damping factor 00341 */ 00342 float get_damping_factor() const; 00343 00344 /*! 00345 * \brief Returns the loop gain alpha 00346 */ 00347 float get_alpha() const; 00348 00349 /*! 00350 * \brief Returns the loop gain beta 00351 */ 00352 float get_beta() const; 00353 00354 /*! 00355 * \brief Returns the current clock rate 00356 */ 00357 float get_clock_rate() const; 00358 00359 /******************************************************************* 00360 *******************************************************************/ 00361 00362 bool check_topology(int ninputs, int noutputs); 00363 00364 int general_work (int noutput_items, 00365 gr_vector_int &ninput_items, 00366 gr_vector_const_void_star &input_items, 00367 gr_vector_void_star &output_items); 00368 }; 00369 00370 #endif