GNU Radio 3.6.5 C++ API

gr_pfb_clock_sync_ccf.h

Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2010 Free Software Foundation, Inc.
00004  *
00005  * This file is part of GNU Radio
00006  *
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  *
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H
00025 #define INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H
00026 
00027 #include <gr_core_api.h>
00028 #include <gr_block.h>
00029 
00030 class gr_pfb_clock_sync_ccf;
00031 typedef boost::shared_ptr<gr_pfb_clock_sync_ccf> gr_pfb_clock_sync_ccf_sptr;
00032 GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw,
00033                                                        const std::vector<float> &taps,
00034                                                        unsigned int filter_size=32,
00035                                                        float init_phase=0,
00036                                                        float max_rate_deviation=1.5,
00037                                                        int osps=1);
00038 
00039 class gr_fir_ccf;
00040 
00041 /*!
00042  * \brief Timing synchronizer using polyphase filterbanks
00043  *
00044  * This block performs timing synchronization for PAM signals by
00045  * minimizing the derivative of the filtered signal, which in turn
00046  * maximizes the SNR and minimizes ISI.
00047  *
00048  * This approach works by setting up two filterbanks; one filterbank
00049  * contains the signal's pulse shaping matched filter (such as a root
00050  * raised cosine filter), where each branch of the filterbank contains
00051  * a different phase of the filter.  The second filterbank contains
00052  * the derivatives of the filters in the first filterbank. Thinking of
00053  * this in the time domain, the first filterbank contains filters that
00054  * have a sinc shape to them. We want to align the output signal to be
00055  * sampled at exactly the peak of the sinc shape. The derivative of
00056  * the sinc contains a zero at the maximum point of the sinc (sinc(0)
00057  * = 1, sinc(0)' = 0).  Furthermore, the region around the zero point
00058  * is relatively linear. We make use of this fact to generate the
00059  * error signal.
00060  *
00061  * If the signal out of the derivative filters is d_i[n] for the ith
00062  * filter, and the output of the matched filter is x_i[n], we
00063  * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} +
00064  * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error in
00065  * the real and imaginary parts. There are two reasons we multiply by
00066  * the signal itself. First, if the symbol could be positive or
00067  * negative going, but we want the error term to always tell us to go
00068  * in the same direction depending on which side of the zero point we
00069  * are on. The sign of x_i[n] adjusts the error term to do
00070  * this. Second, the magnitude of x_i[n] scales the error term
00071  * depending on the symbol's amplitude, so larger signals give us a
00072  * stronger error term because we have more confidence in that
00073  * symbol's value.  Using the magnitude of x_i[n] instead of just the
00074  * sign is especially good for signals with low SNR.
00075  *
00076  * The error signal, e[n], gives us a value proportional to how far
00077  * away from the zero point we are in the derivative signal. We want
00078  * to drive this value to zero, so we set up a second order loop. We
00079  * have two variables for this loop; d_k is the filter number in the
00080  * filterbank we are on and d_rate is the rate which we travel through
00081  * the filters in the steady state. That is, due to the natural clock
00082  * differences between the transmitter and receiver, d_rate represents
00083  * that difference and would traverse the filter phase paths to keep
00084  * the receiver locked. Thinking of this as a second-order PLL, the
00085  * d_rate is the frequency and d_k is the phase. So we update d_rate
00086  * and d_k using the standard loop equations based on two error
00087  * signals, d_alpha and d_beta.  We have these two values set based on
00088  * each other for a critically damped system, so in the block
00089  * constructor, we just ask for "gain," which is d_alpha while d_beta
00090  * is equal to (gain^2)/4.
00091  *
00092  * The block's parameters are:
00093  *
00094  * \li \p sps: The clock sync block needs to know the number of samples per
00095  * symbol, because it defaults to return a single point representing
00096  * the symbol. The sps can be any positive real number and does not
00097  * need to be an integer.
00098  *
00099  * \li \p loop_bw: The loop bandwidth is used to set the gain of the
00100  * inner control loop (see:
00101  * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html).
00102  * This should be set small (a value of around 2pi/100 is suggested in
00103  * that blog post as the step size for the number of radians around
00104  * the unit circle to move relative to the error).
00105  *
00106  * \li \p taps: One of the most important parameters for this block is
00107  * the taps of the filter. One of the benefits of this algorithm is
00108  * that you can put the matched filter in here as the taps, so you get
00109  * both the matched filter and sample timing correction in one go. So
00110  * create your normal matched filter. For a typical digital
00111  * modulation, this is a root raised cosine filter. The number of taps
00112  * of this filter is based on how long you expect the channel to be;
00113  * that is, how many symbols do you want to combine to get the current
00114  * symbols energy back (there's probably a better way of stating
00115  * that). It's usually 5 to 10 or so. That gives you your filter, but
00116  * now we need to think about it as a filter with different phase
00117  * profiles in each filter. So take this number of taps and multiply
00118  * it by the number of filters. This is the number you would use to
00119  * create your prototype filter. When you use this in the PFB
00120  * filerbank, it segments these taps into the filterbanks in such a
00121  * way that each bank now represents the filter at different phases,
00122  * equally spaced at 2pi/N, where N is the number of filters.
00123  *
00124  * \li \p filter_size (default=32): The number of filters can also be
00125  * set and defaults to 32. With 32 filters, you get a good enough
00126  * resolution in the phase to produce very small, almost unnoticeable,
00127  * ISI.  Going to 64 filters can reduce this more, but after that
00128  * there is very little gained for the extra complexity.
00129  *
00130  * \li \p init_phase (default=0): The initial phase is another
00131  * settable parameter and refers to the filter path the algorithm
00132  * initially looks at (i.e., d_k starts at init_phase). This value
00133  * defaults to zero, but it might be useful to start at a different
00134  * phase offset, such as the mid-point of the filters.
00135  *
00136  * \li \p max_rate_deviation (default=1.5): The next parameter is the
00137  * max_rate_devitation, which defaults to 1.5. This is how far we
00138  * allow d_rate to swing, positive or negative, from 0. Constraining
00139  * the rate can help keep the algorithm from walking too far away to
00140  * lock during times when there is no signal.
00141  *
00142  * \li \p osps (default=1): The osps is the number of output samples per symbol. By default,
00143  * the algorithm produces 1 sample per symbol, sampled at the exact
00144  * sample value. This osps value was added to better work with
00145  * equalizers, which do a better job of modeling the channel if they
00146  * have 2 samps/sym.
00147  */
00148 
00149 class GR_CORE_API gr_pfb_clock_sync_ccf : public gr_block
00150 {
00151  private:
00152   /*!
00153    * Build the polyphase filterbank timing synchronizer.
00154    * \param sps (double) The number of samples per symbol in the incoming signal
00155    * \param loop_bw (float) The bandwidth of the control loop; set's alpha and beta.
00156    * \param taps (vector<int>) The filter taps.
00157    * \param filter_size (uint) The number of filters in the filterbank (default = 32).
00158    * \param init_phase (float) The initial phase to look at, or which filter to start
00159    *                           with (default = 0).
00160    * \param max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5).
00161    * \param osps (int) The number of output samples per symbol (default=1).
00162    *
00163    */
00164 
00165   friend GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw,
00166                                                                 const std::vector<float> &taps,
00167                                                                 unsigned int filter_size,
00168                                                                 float init_phase,
00169                                                                 float max_rate_deviation,
00170                                                                 int osps);
00171 
00172   bool                              d_updated;
00173   double                            d_sps;
00174   double                            d_sample_num;
00175   float                             d_loop_bw;
00176   float                             d_damping;
00177   float                             d_alpha;
00178   float                             d_beta;
00179 
00180   int                               d_nfilters;
00181   int                               d_taps_per_filter;
00182   std::vector<gr_fir_ccf*>          d_filters;
00183   std::vector<gr_fir_ccf*>          d_diff_filters;
00184   std::vector< std::vector<float> > d_taps;
00185   std::vector< std::vector<float> > d_dtaps;
00186 
00187   float                             d_k;
00188   float                             d_rate;
00189   float                             d_rate_i;
00190   float                             d_rate_f;
00191   float                             d_max_dev;
00192   int                               d_filtnum;
00193   int                               d_osps;
00194   float                             d_error;
00195   int                               d_out_idx;
00196 
00197   /*!
00198    * Build the polyphase filterbank timing synchronizer.
00199    */
00200   gr_pfb_clock_sync_ccf (double sps, float loop_bw,
00201                          const std::vector<float> &taps,
00202                          unsigned int filter_size,
00203                          float init_phase,
00204                          float max_rate_deviation,
00205                          int osps);
00206 
00207   void create_diff_taps(const std::vector<float> &newtaps,
00208                         std::vector<float> &difftaps);
00209 
00210 public:
00211   ~gr_pfb_clock_sync_ccf ();
00212 
00213   /*! \brief update the system gains from omega and eta
00214    *
00215    *  This function updates the system gains based on the loop
00216    *  bandwidth and damping factor of the system.
00217    *  These two factors can be set separately through their own
00218    *  set functions.
00219    */
00220   void update_gains();
00221 
00222   /*!
00223    * Resets the filterbank's filter taps with the new prototype filter
00224    */
00225   void set_taps (const std::vector<float> &taps,
00226                  std::vector< std::vector<float> > &ourtaps,
00227                  std::vector<gr_fir_ccf*> &ourfilter);
00228 
00229   /*!
00230    * Returns all of the taps of the matched filter
00231    */
00232   std::vector< std::vector<float> > get_taps();
00233 
00234   /*!
00235    * Returns all of the taps of the derivative filter
00236    */
00237   std::vector< std::vector<float> > get_diff_taps();
00238 
00239   /*!
00240    * Returns the taps of the matched filter for a particular channel
00241    */
00242   std::vector<float> get_channel_taps(int channel);
00243 
00244   /*!
00245    * Returns the taps in the derivative filter for a particular channel
00246    */
00247   std::vector<float> get_diff_channel_taps(int channel);
00248 
00249   /*!
00250    * Return the taps as a formatted string for printing
00251    */
00252   std::string get_taps_as_string();
00253 
00254   /*!
00255    * Return the derivative filter taps as a formatted string for printing
00256    */
00257   std::string get_diff_taps_as_string();
00258 
00259 
00260   /*******************************************************************
00261     SET FUNCTIONS
00262   *******************************************************************/
00263 
00264 
00265   /*!
00266    * \brief Set the loop bandwidth
00267    *
00268    * Set the loop filter's bandwidth to \p bw. This should be between
00269    * 2*pi/200 and 2*pi/100  (in rads/samp). It must also be a positive
00270    * number.
00271    *
00272    * When a new damping factor is set, the gains, alpha and beta, of the loop
00273    * are recalculated by a call to update_gains().
00274    *
00275    * \param bw    (float) new bandwidth
00276    *
00277    */
00278   void set_loop_bandwidth(float bw);
00279 
00280   /*!
00281    * \brief Set the loop damping factor
00282    *
00283    * Set the loop filter's damping factor to \p df. The damping factor
00284    * should be sqrt(2)/2.0 for critically damped systems.
00285    * Set it to anything else only if you know what you are doing. It must
00286    * be a number between 0 and 1.
00287    *
00288    * When a new damping factor is set, the gains, alpha and beta, of the loop
00289    * are recalculated by a call to update_gains().
00290    *
00291    * \param df    (float) new damping factor
00292    *
00293    */
00294   void set_damping_factor(float df);
00295 
00296   /*!
00297    * \brief Set the loop gain alpha
00298    *
00299    * Set's the loop filter's alpha gain parameter.
00300    *
00301    * This value should really only be set by adjusting the loop bandwidth
00302    * and damping factor.
00303    *
00304    * \param alpha    (float) new alpha gain
00305    *
00306    */
00307   void set_alpha(float alpha);
00308 
00309   /*!
00310    * \brief Set the loop gain beta
00311    *
00312    * Set's the loop filter's beta gain parameter.
00313    *
00314    * This value should really only be set by adjusting the loop bandwidth
00315    * and damping factor.
00316    *
00317    * \param beta    (float) new beta gain
00318    *
00319    */
00320   void set_beta(float beta);
00321 
00322   /*!
00323    * Set the maximum deviation from 0 d_rate can have
00324    */
00325   void set_max_rate_deviation(float m)
00326   {
00327     d_max_dev = m;
00328   }
00329 
00330   /*******************************************************************
00331     GET FUNCTIONS
00332   *******************************************************************/
00333 
00334   /*!
00335    * \brief Returns the loop bandwidth
00336    */
00337   float get_loop_bandwidth() const;
00338 
00339   /*!
00340    * \brief Returns the loop damping factor
00341    */
00342   float get_damping_factor() const;
00343 
00344   /*!
00345    * \brief Returns the loop gain alpha
00346    */
00347   float get_alpha() const;
00348 
00349   /*!
00350    * \brief Returns the loop gain beta
00351    */
00352   float get_beta() const;
00353 
00354   /*!
00355    * \brief Returns the current clock rate
00356    */
00357   float get_clock_rate() const;
00358 
00359   /*******************************************************************
00360   *******************************************************************/
00361 
00362   bool check_topology(int ninputs, int noutputs);
00363 
00364   int general_work (int noutput_items,
00365                     gr_vector_int &ninput_items,
00366                     gr_vector_const_void_star &input_items,
00367                     gr_vector_void_star &output_items);
00368 };
00369 
00370 #endif