GNU Radio 3.6.5 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2009,2010,2012 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 00024 #ifndef INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H 00025 #define INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H 00026 00027 #include <digital_api.h> 00028 #include <gr_block.h> 00029 00030 class digital_pfb_clock_sync_fff; 00031 typedef boost::shared_ptr<digital_pfb_clock_sync_fff> digital_pfb_clock_sync_fff_sptr; 00032 DIGITAL_API digital_pfb_clock_sync_fff_sptr 00033 digital_make_pfb_clock_sync_fff(double sps, float gain, 00034 const std::vector<float> &taps, 00035 unsigned int filter_size=32, 00036 float init_phase=0, 00037 float max_rate_deviation=1.5, 00038 int osps=1); 00039 00040 class gr_fir_fff; 00041 00042 /*! 00043 * \brief Timing synchronizer using polyphase filterbanks 00044 * \ingroup synchronizers_blk 00045 * 00046 * \details 00047 * This block performs timing synchronization for PAM signals by 00048 * minimizing the derivative of the filtered signal, which in turn 00049 * maximizes the SNR and minimizes ISI. 00050 * 00051 * This approach works by setting up two filterbanks; one filterbank 00052 * contains the signal's pulse shaping matched filter (such as a root 00053 * raised cosine filter), where each branch of the filterbank contains 00054 * a different phase of the filter. The second filterbank contains 00055 * the derivatives of the filters in the first filterbank. Thinking of 00056 * this in the time domain, the first filterbank contains filters that 00057 * have a sinc shape to them. We want to align the output signal to be 00058 * sampled at exactly the peak of the sinc shape. The derivative of 00059 * the sinc contains a zero at the maximum point of the sinc (sinc(0) 00060 * = 1, sinc(0)' = 0). Furthermore, the region around the zero point 00061 * is relatively linear. We make use of this fact to generate the 00062 * error signal. 00063 * 00064 * If the signal out of the derivative filters is d_i[n] for the ith 00065 * filter, and the output of the matched filter is x_i[n], we 00066 * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} + 00067 * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error in 00068 * the real and imaginary parts. There are two reasons we multiply by 00069 * the signal itself. First, if the symbol could be positive or 00070 * negative going, but we want the error term to always tell us to go 00071 * in the same direction depending on which side of the zero point we 00072 * are on. The sign of x_i[n] adjusts the error term to do 00073 * this. Second, the magnitude of x_i[n] scales the error term 00074 * depending on the symbol's amplitude, so larger signals give us a 00075 * stronger error term because we have more confidence in that 00076 * symbol's value. Using the magnitude of x_i[n] instead of just the 00077 * sign is especially good for signals with low SNR. 00078 * 00079 * The error signal, e[n], gives us a value proportional to how far 00080 * away from the zero point we are in the derivative signal. We want 00081 * to drive this value to zero, so we set up a second order loop. We 00082 * have two variables for this loop; d_k is the filter number in the 00083 * filterbank we are on and d_rate is the rate which we travel through 00084 * the filters in the steady state. That is, due to the natural clock 00085 * differences between the transmitter and receiver, d_rate represents 00086 * that difference and would traverse the filter phase paths to keep 00087 * the receiver locked. Thinking of this as a second-order PLL, the 00088 * d_rate is the frequency and d_k is the phase. So we update d_rate 00089 * and d_k using the standard loop equations based on two error 00090 * signals, d_alpha and d_beta. We have these two values set based on 00091 * each other for a critically damped system, so in the block 00092 * constructor, we just ask for "gain," which is d_alpha while d_beta 00093 * is equal to (gain^2)/4. 00094 * 00095 * The block's parameters are: 00096 * 00097 * \li \p sps: The clock sync block needs to know the number of samples per 00098 * symbol, because it defaults to return a single point representing 00099 * the symbol. The sps can be any positive real number and does not 00100 * need to be an integer. 00101 * 00102 * \li \p loop_bw: The loop bandwidth is used to set the gain of the 00103 * inner control loop (see: 00104 * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html). 00105 * This should be set small (a value of around 2pi/100 is suggested in 00106 * that blog post as the step size for the number of radians around 00107 * the unit circle to move relative to the error). 00108 * 00109 * \li \p taps: One of the most important parameters for this block is 00110 * the taps of the filter. One of the benefits of this algorithm is 00111 * that you can put the matched filter in here as the taps, so you get 00112 * both the matched filter and sample timing correction in one go. So 00113 * create your normal matched filter. For a typical digital 00114 * modulation, this is a root raised cosine filter. The number of taps 00115 * of this filter is based on how long you expect the channel to be; 00116 * that is, how many symbols do you want to combine to get the current 00117 * symbols energy back (there's probably a better way of stating 00118 * that). It's usually 5 to 10 or so. That gives you your filter, but 00119 * now we need to think about it as a filter with different phase 00120 * profiles in each filter. So take this number of taps and multiply 00121 * it by the number of filters. This is the number you would use to 00122 * create your prototype filter. When you use this in the PFB 00123 * filerbank, it segments these taps into the filterbanks in such a 00124 * way that each bank now represents the filter at different phases, 00125 * equally spaced at 2pi/N, where N is the number of filters. 00126 * 00127 * \li \p filter_size (default=32): The number of filters can also be 00128 * set and defaults to 32. With 32 filters, you get a good enough 00129 * resolution in the phase to produce very small, almost unnoticeable, 00130 * ISI. Going to 64 filters can reduce this more, but after that 00131 * there is very little gained for the extra complexity. 00132 * 00133 * \li \p init_phase (default=0): The initial phase is another 00134 * settable parameter and refers to the filter path the algorithm 00135 * initially looks at (i.e., d_k starts at init_phase). This value 00136 * defaults to zero, but it might be useful to start at a different 00137 * phase offset, such as the mid-point of the filters. 00138 * 00139 * \li \p max_rate_deviation (default=1.5): The next parameter is the 00140 * max_rate_devitation, which defaults to 1.5. This is how far we 00141 * allow d_rate to swing, positive or negative, from 0. Constraining 00142 * the rate can help keep the algorithm from walking too far away to 00143 * lock during times when there is no signal. 00144 * 00145 * \li \p osps (default=1): The osps is the number of output samples 00146 * per symbol. By default, the algorithm produces 1 sample per symbol, 00147 * sampled at the exact sample value. This osps value was added to 00148 * better work with equalizers, which do a better job of modeling the 00149 * channel if they have 2 samps/sym. 00150 */ 00151 00152 class DIGITAL_API digital_pfb_clock_sync_fff : public gr_block 00153 { 00154 private: 00155 /*! 00156 * Build the polyphase filterbank timing synchronizer. 00157 * \param sps (double) The number of samples per second in the incoming signal 00158 * \param gain (float) The alpha gain of the control loop; beta = (gain^2)/4 by default. 00159 * \param taps (vector<int>) The filter taps. 00160 * \param filter_size (uint) The number of filters in the filterbank (default = 32). 00161 * \param init_phase (float) The initial phase to look at, or which filter to start 00162 * with (default = 0). 00163 * \param max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5). 00164 * \param osps (int) The number of output samples per symbol (default=1). 00165 * 00166 */ 00167 friend DIGITAL_API digital_pfb_clock_sync_fff_sptr 00168 digital_make_pfb_clock_sync_fff(double sps, float gain, 00169 const std::vector<float> &taps, 00170 unsigned int filter_size, 00171 float init_phase, 00172 float max_rate_deviation, 00173 int osps); 00174 00175 bool d_updated; 00176 double d_sps; 00177 double d_sample_num; 00178 float d_loop_bw; 00179 float d_damping; 00180 float d_alpha; 00181 float d_beta; 00182 00183 int d_nfilters; 00184 int d_taps_per_filter; 00185 std::vector<gr_fir_fff*> d_filters; 00186 std::vector<gr_fir_fff*> d_diff_filters; 00187 std::vector< std::vector<float> > d_taps; 00188 std::vector< std::vector<float> > d_dtaps; 00189 00190 float d_k; 00191 float d_rate; 00192 float d_rate_i; 00193 float d_rate_f; 00194 float d_max_dev; 00195 int d_filtnum; 00196 int d_osps; 00197 float d_error; 00198 int d_out_idx; 00199 00200 /*! 00201 * Build the polyphase filterbank timing synchronizer. 00202 */ 00203 digital_pfb_clock_sync_fff(double sps, float gain, 00204 const std::vector<float> &taps, 00205 unsigned int filter_size, 00206 float init_phase, 00207 float max_rate_deviation, 00208 int osps); 00209 00210 void create_diff_taps(const std::vector<float> &newtaps, 00211 std::vector<float> &difftaps); 00212 00213 public: 00214 ~digital_pfb_clock_sync_fff (); 00215 00216 /*! \brief update the system gains from omega and eta 00217 * 00218 * This function updates the system gains based on the loop 00219 * bandwidth and damping factor of the system. 00220 * These two factors can be set separately through their own 00221 * set functions. 00222 */ 00223 void update_gains(); 00224 00225 /*! 00226 * Resets the filterbank's filter taps with the new prototype filter 00227 */ 00228 void set_taps(const std::vector<float> &taps, 00229 std::vector< std::vector<float> > &ourtaps, 00230 std::vector<gr_fir_fff*> &ourfilter); 00231 00232 /*! 00233 * Returns all of the taps of the matched filter 00234 */ 00235 std::vector< std::vector<float> > get_taps(); 00236 00237 /*! 00238 * Returns all of the taps of the derivative filter 00239 */ 00240 std::vector< std::vector<float> > get_diff_taps(); 00241 00242 /*! 00243 * Returns the taps of the matched filter for a particular channel 00244 */ 00245 std::vector<float> get_channel_taps(int channel); 00246 00247 /*! 00248 * Returns the taps in the derivative filter for a particular channel 00249 */ 00250 std::vector<float> get_diff_channel_taps(int channel); 00251 00252 /*! 00253 * Return the taps as a formatted string for printing 00254 */ 00255 std::string get_taps_as_string(); 00256 00257 /*! 00258 * Return the derivative filter taps as a formatted string for printing 00259 */ 00260 std::string get_diff_taps_as_string(); 00261 00262 00263 /******************************************************************* 00264 SET FUNCTIONS 00265 *******************************************************************/ 00266 00267 00268 /*! 00269 * \brief Set the loop bandwidth 00270 * 00271 * Set the loop filter's bandwidth to \p bw. This should be between 00272 * 2*pi/200 and 2*pi/100 (in rads/samp). It must also be a positive 00273 * number. 00274 * 00275 * When a new damping factor is set, the gains, alpha and beta, of the loop 00276 * are recalculated by a call to update_gains(). 00277 * 00278 * \param bw (float) new bandwidth 00279 * 00280 */ 00281 void set_loop_bandwidth(float bw); 00282 00283 /*! 00284 * \brief Set the loop damping factor 00285 * 00286 * Set the loop filter's damping factor to \p df. The damping factor 00287 * should be sqrt(2)/2.0 for critically damped systems. 00288 * Set it to anything else only if you know what you are doing. It must 00289 * be a number between 0 and 1. 00290 * 00291 * When a new damping factor is set, the gains, alpha and beta, of the loop 00292 * are recalculated by a call to update_gains(). 00293 * 00294 * \param df (float) new damping factor 00295 * 00296 */ 00297 void set_damping_factor(float df); 00298 00299 /*! 00300 * \brief Set the loop gain alpha 00301 * 00302 * Set's the loop filter's alpha gain parameter. 00303 * 00304 * This value should really only be set by adjusting the loop bandwidth 00305 * and damping factor. 00306 * 00307 * \param alpha (float) new alpha gain 00308 * 00309 */ 00310 void set_alpha(float alpha); 00311 00312 /*! 00313 * \brief Set the loop gain beta 00314 * 00315 * Set's the loop filter's beta gain parameter. 00316 * 00317 * This value should really only be set by adjusting the loop bandwidth 00318 * and damping factor. 00319 * 00320 * \param beta (float) new beta gain 00321 * 00322 */ 00323 void set_beta(float beta); 00324 00325 /*! 00326 * Set the maximum deviation from 0 d_rate can have 00327 */ 00328 void set_max_rate_deviation(float m) 00329 { 00330 d_max_dev = m; 00331 } 00332 00333 /******************************************************************* 00334 GET FUNCTIONS 00335 *******************************************************************/ 00336 00337 /*! 00338 * \brief Returns the loop bandwidth 00339 */ 00340 float get_loop_bandwidth() const; 00341 00342 /*! 00343 * \brief Returns the loop damping factor 00344 */ 00345 float get_damping_factor() const; 00346 00347 /*! 00348 * \brief Returns the loop gain alpha 00349 */ 00350 float get_alpha() const; 00351 00352 /*! 00353 * \brief Returns the loop gain beta 00354 */ 00355 float get_beta() const; 00356 00357 /*! 00358 * \brief Returns the current clock rate 00359 */ 00360 float get_clock_rate() const; 00361 00362 /******************************************************************* 00363 *******************************************************************/ 00364 00365 bool check_topology(int ninputs, int noutputs); 00366 00367 int general_work(int noutput_items, 00368 gr_vector_int &ninput_items, 00369 gr_vector_const_void_star &input_items, 00370 gr_vector_void_star &output_items); 00371 }; 00372 00373 #endif