GNU Radio 3.6.5 C++ API

digital_pfb_clock_sync_fff.h

Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2010,2012 Free Software Foundation, Inc.
00004  *
00005  * This file is part of GNU Radio
00006  *
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  *
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
00025 #define INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
00026 
00027 #include <digital_api.h>
00028 #include <gr_block.h>
00029 
00030 class digital_pfb_clock_sync_fff;
00031 typedef boost::shared_ptr<digital_pfb_clock_sync_fff> digital_pfb_clock_sync_fff_sptr;
00032 DIGITAL_API digital_pfb_clock_sync_fff_sptr
00033 digital_make_pfb_clock_sync_fff(double sps, float gain,
00034                                 const std::vector<float> &taps,
00035                                 unsigned int filter_size=32,
00036                                 float init_phase=0,
00037                                 float max_rate_deviation=1.5,
00038                                 int osps=1);
00039 
00040 class gr_fir_fff;
00041 
00042 /*!
00043  * \brief Timing synchronizer using polyphase filterbanks
00044  * \ingroup synchronizers_blk
00045  *
00046  * \details
00047  * This block performs timing synchronization for PAM signals by
00048  * minimizing the derivative of the filtered signal, which in turn
00049  * maximizes the SNR and minimizes ISI.
00050  *
00051  * This approach works by setting up two filterbanks; one filterbank
00052  * contains the signal's pulse shaping matched filter (such as a root
00053  * raised cosine filter), where each branch of the filterbank contains
00054  * a different phase of the filter.  The second filterbank contains
00055  * the derivatives of the filters in the first filterbank. Thinking of
00056  * this in the time domain, the first filterbank contains filters that
00057  * have a sinc shape to them. We want to align the output signal to be
00058  * sampled at exactly the peak of the sinc shape. The derivative of
00059  * the sinc contains a zero at the maximum point of the sinc (sinc(0)
00060  * = 1, sinc(0)' = 0).  Furthermore, the region around the zero point
00061  * is relatively linear. We make use of this fact to generate the
00062  * error signal.
00063  *
00064  * If the signal out of the derivative filters is d_i[n] for the ith
00065  * filter, and the output of the matched filter is x_i[n], we
00066  * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} +
00067  * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error in
00068  * the real and imaginary parts. There are two reasons we multiply by
00069  * the signal itself. First, if the symbol could be positive or
00070  * negative going, but we want the error term to always tell us to go
00071  * in the same direction depending on which side of the zero point we
00072  * are on. The sign of x_i[n] adjusts the error term to do
00073  * this. Second, the magnitude of x_i[n] scales the error term
00074  * depending on the symbol's amplitude, so larger signals give us a
00075  * stronger error term because we have more confidence in that
00076  * symbol's value.  Using the magnitude of x_i[n] instead of just the
00077  * sign is especially good for signals with low SNR.
00078  *
00079  * The error signal, e[n], gives us a value proportional to how far
00080  * away from the zero point we are in the derivative signal. We want
00081  * to drive this value to zero, so we set up a second order loop. We
00082  * have two variables for this loop; d_k is the filter number in the
00083  * filterbank we are on and d_rate is the rate which we travel through
00084  * the filters in the steady state. That is, due to the natural clock
00085  * differences between the transmitter and receiver, d_rate represents
00086  * that difference and would traverse the filter phase paths to keep
00087  * the receiver locked. Thinking of this as a second-order PLL, the
00088  * d_rate is the frequency and d_k is the phase. So we update d_rate
00089  * and d_k using the standard loop equations based on two error
00090  * signals, d_alpha and d_beta.  We have these two values set based on
00091  * each other for a critically damped system, so in the block
00092  * constructor, we just ask for "gain," which is d_alpha while d_beta
00093  * is equal to (gain^2)/4.
00094  *
00095  * The block's parameters are:
00096  *
00097  * \li \p sps: The clock sync block needs to know the number of samples per
00098  * symbol, because it defaults to return a single point representing
00099  * the symbol. The sps can be any positive real number and does not
00100  * need to be an integer.
00101  *
00102  * \li \p loop_bw: The loop bandwidth is used to set the gain of the
00103  * inner control loop (see:
00104  * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html).
00105  * This should be set small (a value of around 2pi/100 is suggested in
00106  * that blog post as the step size for the number of radians around
00107  * the unit circle to move relative to the error).
00108  *
00109  * \li \p taps: One of the most important parameters for this block is
00110  * the taps of the filter. One of the benefits of this algorithm is
00111  * that you can put the matched filter in here as the taps, so you get
00112  * both the matched filter and sample timing correction in one go. So
00113  * create your normal matched filter. For a typical digital
00114  * modulation, this is a root raised cosine filter. The number of taps
00115  * of this filter is based on how long you expect the channel to be;
00116  * that is, how many symbols do you want to combine to get the current
00117  * symbols energy back (there's probably a better way of stating
00118  * that). It's usually 5 to 10 or so. That gives you your filter, but
00119  * now we need to think about it as a filter with different phase
00120  * profiles in each filter. So take this number of taps and multiply
00121  * it by the number of filters. This is the number you would use to
00122  * create your prototype filter. When you use this in the PFB
00123  * filerbank, it segments these taps into the filterbanks in such a
00124  * way that each bank now represents the filter at different phases,
00125  * equally spaced at 2pi/N, where N is the number of filters.
00126  *
00127  * \li \p filter_size (default=32): The number of filters can also be
00128  * set and defaults to 32. With 32 filters, you get a good enough
00129  * resolution in the phase to produce very small, almost unnoticeable,
00130  * ISI.  Going to 64 filters can reduce this more, but after that
00131  * there is very little gained for the extra complexity.
00132  *
00133  * \li \p init_phase (default=0): The initial phase is another
00134  * settable parameter and refers to the filter path the algorithm
00135  * initially looks at (i.e., d_k starts at init_phase). This value
00136  * defaults to zero, but it might be useful to start at a different
00137  * phase offset, such as the mid-point of the filters.
00138  *
00139  * \li \p max_rate_deviation (default=1.5): The next parameter is the
00140  * max_rate_devitation, which defaults to 1.5. This is how far we
00141  * allow d_rate to swing, positive or negative, from 0. Constraining
00142  * the rate can help keep the algorithm from walking too far away to
00143  * lock during times when there is no signal.
00144  *
00145  * \li \p osps (default=1): The osps is the number of output samples
00146  * per symbol. By default, the algorithm produces 1 sample per symbol,
00147  * sampled at the exact sample value. This osps value was added to
00148  * better work with equalizers, which do a better job of modeling the
00149  * channel if they have 2 samps/sym.
00150  */
00151 
00152 class DIGITAL_API digital_pfb_clock_sync_fff : public gr_block
00153 {
00154  private:
00155   /*!
00156    * Build the polyphase filterbank timing synchronizer.
00157    * \param sps (double) The number of samples per second in the incoming signal
00158    * \param gain (float) The alpha gain of the control loop; beta = (gain^2)/4 by default.
00159    * \param taps (vector<int>) The filter taps.
00160    * \param filter_size (uint) The number of filters in the filterbank (default = 32).
00161    * \param init_phase (float) The initial phase to look at, or which filter to start
00162    *                           with (default = 0).
00163    * \param max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5).
00164    * \param osps (int) The number of output samples per symbol (default=1).
00165    *
00166    */
00167   friend DIGITAL_API digital_pfb_clock_sync_fff_sptr
00168     digital_make_pfb_clock_sync_fff(double sps, float gain,
00169                                     const std::vector<float> &taps,
00170                                     unsigned int filter_size,
00171                                     float init_phase,
00172                                     float max_rate_deviation,
00173                                     int osps);
00174 
00175   bool                              d_updated;
00176   double                            d_sps;
00177   double                            d_sample_num;
00178   float                             d_loop_bw;
00179   float                             d_damping;
00180   float                             d_alpha;
00181   float                             d_beta;
00182 
00183   int                               d_nfilters;
00184   int                               d_taps_per_filter;
00185   std::vector<gr_fir_fff*>          d_filters;
00186   std::vector<gr_fir_fff*>          d_diff_filters;
00187   std::vector< std::vector<float> > d_taps;
00188   std::vector< std::vector<float> > d_dtaps;
00189 
00190   float                             d_k;
00191   float                             d_rate;
00192   float                             d_rate_i;
00193   float                             d_rate_f;
00194   float                             d_max_dev;
00195   int                               d_filtnum;
00196   int                               d_osps;
00197   float                             d_error;
00198   int                               d_out_idx;
00199 
00200   /*!
00201    * Build the polyphase filterbank timing synchronizer.
00202    */
00203   digital_pfb_clock_sync_fff(double sps, float gain,
00204                              const std::vector<float> &taps,
00205                              unsigned int filter_size,
00206                              float init_phase,
00207                              float max_rate_deviation,
00208                              int osps);
00209 
00210   void create_diff_taps(const std::vector<float> &newtaps,
00211                         std::vector<float> &difftaps);
00212 
00213 public:
00214   ~digital_pfb_clock_sync_fff ();
00215 
00216   /*! \brief update the system gains from omega and eta
00217    *
00218    *  This function updates the system gains based on the loop
00219    *  bandwidth and damping factor of the system.
00220    *  These two factors can be set separately through their own
00221    *  set functions.
00222    */
00223   void update_gains();
00224 
00225   /*!
00226    * Resets the filterbank's filter taps with the new prototype filter
00227    */
00228   void set_taps(const std::vector<float> &taps,
00229                 std::vector< std::vector<float> > &ourtaps,
00230                 std::vector<gr_fir_fff*> &ourfilter);
00231 
00232   /*!
00233    * Returns all of the taps of the matched filter
00234    */
00235   std::vector< std::vector<float> > get_taps();
00236 
00237   /*!
00238    * Returns all of the taps of the derivative filter
00239    */
00240   std::vector< std::vector<float> > get_diff_taps();
00241 
00242   /*!
00243    * Returns the taps of the matched filter for a particular channel
00244    */
00245   std::vector<float> get_channel_taps(int channel);
00246 
00247   /*!
00248    * Returns the taps in the derivative filter for a particular channel
00249    */
00250   std::vector<float> get_diff_channel_taps(int channel);
00251 
00252   /*!
00253    * Return the taps as a formatted string for printing
00254    */
00255   std::string get_taps_as_string();
00256 
00257   /*!
00258    * Return the derivative filter taps as a formatted string for printing
00259    */
00260   std::string get_diff_taps_as_string();
00261 
00262 
00263   /*******************************************************************
00264     SET FUNCTIONS
00265   *******************************************************************/
00266 
00267 
00268   /*!
00269    * \brief Set the loop bandwidth
00270    *
00271    * Set the loop filter's bandwidth to \p bw. This should be between
00272    * 2*pi/200 and 2*pi/100  (in rads/samp). It must also be a positive
00273    * number.
00274    *
00275    * When a new damping factor is set, the gains, alpha and beta, of the loop
00276    * are recalculated by a call to update_gains().
00277    *
00278    * \param bw    (float) new bandwidth
00279    *
00280    */
00281   void set_loop_bandwidth(float bw);
00282 
00283   /*!
00284    * \brief Set the loop damping factor
00285    *
00286    * Set the loop filter's damping factor to \p df. The damping factor
00287    * should be sqrt(2)/2.0 for critically damped systems.
00288    * Set it to anything else only if you know what you are doing. It must
00289    * be a number between 0 and 1.
00290    *
00291    * When a new damping factor is set, the gains, alpha and beta, of the loop
00292    * are recalculated by a call to update_gains().
00293    *
00294    * \param df    (float) new damping factor
00295    *
00296    */
00297   void set_damping_factor(float df);
00298 
00299   /*!
00300    * \brief Set the loop gain alpha
00301    *
00302    * Set's the loop filter's alpha gain parameter.
00303    *
00304    * This value should really only be set by adjusting the loop bandwidth
00305    * and damping factor.
00306    *
00307    * \param alpha    (float) new alpha gain
00308    *
00309    */
00310   void set_alpha(float alpha);
00311 
00312   /*!
00313    * \brief Set the loop gain beta
00314    *
00315    * Set's the loop filter's beta gain parameter.
00316    *
00317    * This value should really only be set by adjusting the loop bandwidth
00318    * and damping factor.
00319    *
00320    * \param beta    (float) new beta gain
00321    *
00322    */
00323   void set_beta(float beta);
00324 
00325   /*!
00326    * Set the maximum deviation from 0 d_rate can have
00327    */
00328   void set_max_rate_deviation(float m)
00329   {
00330     d_max_dev = m;
00331   }
00332 
00333   /*******************************************************************
00334     GET FUNCTIONS
00335   *******************************************************************/
00336 
00337   /*!
00338    * \brief Returns the loop bandwidth
00339    */
00340   float get_loop_bandwidth() const;
00341 
00342   /*!
00343    * \brief Returns the loop damping factor
00344    */
00345   float get_damping_factor() const;
00346 
00347   /*!
00348    * \brief Returns the loop gain alpha
00349    */
00350   float get_alpha() const;
00351 
00352   /*!
00353    * \brief Returns the loop gain beta
00354    */
00355   float get_beta() const;
00356 
00357   /*!
00358    * \brief Returns the current clock rate
00359    */
00360   float get_clock_rate() const;
00361 
00362   /*******************************************************************
00363   *******************************************************************/
00364 
00365   bool check_topology(int ninputs, int noutputs);
00366 
00367   int general_work(int noutput_items,
00368                    gr_vector_int &ninput_items,
00369                    gr_vector_const_void_star &input_items,
00370                    gr_vector_void_star &output_items);
00371 };
00372 
00373 #endif