GNU Radio 3.6.5 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2006,2007,2011 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 #ifndef INCLUDED_DIGITAL_OFDM_FRAME_ACQUISITION_H 00024 #define INCLUDED_DIGITAL_OFDM_FRAME_ACQUISITION_H 00025 00026 #include <digital_api.h> 00027 #include <gr_block.h> 00028 #include <vector> 00029 00030 class digital_ofdm_frame_acquisition; 00031 typedef boost::shared_ptr<digital_ofdm_frame_acquisition> digital_ofdm_frame_acquisition_sptr; 00032 00033 digital_ofdm_frame_acquisition_sptr 00034 DIGITAL_API digital_make_ofdm_frame_acquisition (unsigned int occupied_carriers, unsigned int fft_length, 00035 unsigned int cplen, 00036 const std::vector<gr_complex> &known_symbol, 00037 unsigned int max_fft_shift_len=10); 00038 00039 /*! 00040 * \brief take a vector of complex constellation points in from an FFT 00041 * and performs a correlation and equalization. 00042 * \ingroup ofdm_blk 00043 * 00044 * This block takes the output of an FFT of a received OFDM symbol and finds the 00045 * start of a frame based on two known symbols. It also looks at the surrounding 00046 * bins in the FFT output for the correlation in case there is a large frequency 00047 * shift in the data. This block assumes that the fine frequency shift has already 00048 * been corrected and that the samples fall in the middle of one FFT bin. 00049 * 00050 * It then uses one of those known 00051 * symbols to estimate the channel response over all subcarriers and does a simple 00052 * 1-tap equalization on all subcarriers. This corrects for the phase and amplitude 00053 * distortion caused by the channel. 00054 */ 00055 00056 class DIGITAL_API digital_ofdm_frame_acquisition : public gr_block 00057 { 00058 /*! 00059 * \brief Build an OFDM correlator and equalizer. 00060 * \param occupied_carriers The number of subcarriers with data in the received symbol 00061 * \param fft_length The size of the FFT vector (occupied_carriers + unused carriers) 00062 * \param cplen The length of the cycle prefix 00063 * \param known_symbol A vector of complex numbers representing a known symbol at the 00064 * start of a frame (usually a BPSK PN sequence) 00065 * \param max_fft_shift_len Set's the maximum distance you can look between bins for correlation 00066 */ 00067 friend DIGITAL_API digital_ofdm_frame_acquisition_sptr 00068 digital_make_ofdm_frame_acquisition (unsigned int occupied_carriers, unsigned int fft_length, 00069 unsigned int cplen, 00070 const std::vector<gr_complex> &known_symbol, 00071 unsigned int max_fft_shift_len); 00072 00073 protected: 00074 digital_ofdm_frame_acquisition (unsigned int occupied_carriers, unsigned int fft_length, 00075 unsigned int cplen, 00076 const std::vector<gr_complex> &known_symbol, 00077 unsigned int max_fft_shift_len); 00078 00079 private: 00080 unsigned char slicer(gr_complex x); 00081 void correlate(const gr_complex *symbol, int zeros_on_left); 00082 void calculate_equalizer(const gr_complex *symbol, int zeros_on_left); 00083 gr_complex coarse_freq_comp(int freq_delta, int count); 00084 00085 unsigned int d_occupied_carriers; // !< \brief number of subcarriers with data 00086 unsigned int d_fft_length; // !< \brief length of FFT vector 00087 unsigned int d_cplen; // !< \brief length of cyclic prefix in samples 00088 unsigned int d_freq_shift_len; // !< \brief number of surrounding bins to look at for correlation 00089 std::vector<gr_complex> d_known_symbol; // !< \brief known symbols at start of frame 00090 std::vector<float> d_known_phase_diff; // !< \brief factor used in correlation from known symbol 00091 std::vector<float> d_symbol_phase_diff; // !< \brief factor used in correlation from received symbol 00092 std::vector<gr_complex> d_hestimate; // !< channel estimate 00093 int d_coarse_freq; // !< \brief search distance in number of bins 00094 unsigned int d_phase_count; // !< \brief accumulator for coarse freq correction 00095 float d_snr_est; // !< an estimation of the signal to noise ratio 00096 00097 gr_complex *d_phase_lut; // !< look-up table for coarse frequency compensation 00098 00099 void forecast(int noutput_items, gr_vector_int &ninput_items_required); 00100 00101 public: 00102 /*! 00103 * \brief Return an estimate of the SNR of the channel 00104 */ 00105 float snr() { return d_snr_est; } 00106 00107 ~digital_ofdm_frame_acquisition(void); 00108 int general_work(int noutput_items, 00109 gr_vector_int &ninput_items, 00110 gr_vector_const_void_star &input_items, 00111 gr_vector_void_star &output_items); 00112 }; 00113 00114 00115 #endif