GNU Radio 3.6.5 C++ API

digital_fll_band_edge_cc.h

Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2011,2012 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_DIGITAL_FLL_BAND_EDGE_CC_H
00025 #define INCLUDED_DIGITAL_FLL_BAND_EDGE_CC_H
00026 
00027 #include <digital_api.h>
00028 #include <gr_sync_block.h>
00029 #include <gri_control_loop.h>
00030 #include <gr_fir_util.h>
00031 #include <gr_fir_ccc.h>
00032 
00033 typedef gr_fir_ccc* (*fir_maker_t)(const std::vector<gr_complex> &taps);
00034 typedef gr_fir_ccc  filter_t;
00035 
00036 class digital_fll_band_edge_cc;
00037 typedef boost::shared_ptr<digital_fll_band_edge_cc> digital_fll_band_edge_cc_sptr;
00038 DIGITAL_API digital_fll_band_edge_cc_sptr
00039 digital_make_fll_band_edge_cc(float samps_per_sym,
00040                               float rolloff,
00041                               int filter_size,
00042                               float bandwidth);
00043 
00044 /*!
00045  * \class digital_fll_band_edge_cc
00046  * \brief Frequency Lock Loop using band-edge filters
00047  * \ingroup synchronizers_blk
00048  *
00049  * \details
00050  * The frequency lock loop derives a band-edge filter that covers the
00051  * upper and lower bandwidths of a digitally-modulated signal. The
00052  * bandwidth range is determined by the excess bandwidth (e.g.,
00053  * rolloff factor) of the modulated signal. The placement in frequency
00054  * of the band-edges is determined by the oversampling ratio (number
00055  * of samples per symbol) and the excess bandwidth.  The size of the
00056  * filters should be fairly large so as to average over a number of
00057  * symbols.
00058  *
00059  * The FLL works by filtering the upper and lower band edges into
00060  * x_u(t) and x_l(t), respectively.  These are combined to form cc(t)
00061  * = x_u(t) + x_l(t) and ss(t) = x_u(t) - x_l(t). Combining these to
00062  * form the signal e(t) = Re{cc(t) \\times ss(t)^*} (where ^* is the
00063  * complex conjugate) provides an error signal at the DC term that is
00064  * directly proportional to the carrier frequency.  We then make a
00065  * second-order loop using the error signal that is the running
00066  * average of e(t).
00067  *
00068  * In practice, the above equation can be simplified by just comparing
00069  * the absolute value squared of the output of both filters:
00070  * abs(x_l(t))^2 - abs(x_u(t))^2 = norm(x_l(t)) - norm(x_u(t)).
00071  *
00072  * In theory, the band-edge filter is the derivative of the matched
00073  * filter in frequency, (H_be(f) = frac{H(f)}{df}). In practice,
00074  * this comes down to a quarter sine wave at the point of the matched
00075  * filter's rolloff (if it's a raised-cosine, the derivative of a
00076  * cosine is a sine).  Extend this sine by another quarter wave to
00077  * make a half wave around the band-edges is equivalent in time to the
00078  * sum of two sinc functions. The baseband filter fot the band edges
00079  * is therefore derived from this sum of sincs. The band edge filters
00080  * are then just the baseband signal modulated to the correct place in
00081  * frequency. All of these calculations are done in the
00082  * 'design_filter' function.
00083  *
00084  * Note: We use FIR filters here because the filters have to have a
00085  * flat phase response over the entire frequency range to allow their
00086  * comparisons to be valid.
00087  *
00088  * It is very important that the band edge filters be the derivatives
00089  * of the pulse shaping filter, and that they be linear
00090  * phase. Otherwise, the variance of the error will be very large.
00091  *
00092  */
00093 
00094 class DIGITAL_API digital_fll_band_edge_cc :
00095   public gr_sync_block, public gri_control_loop
00096 {
00097  private:
00098   /*!
00099    * Build the FLL
00100    * \param samps_per_sym    (float) Number of samples per symbol of signal
00101    * \param rolloff          (float) Rolloff factor of signal
00102    * \param filter_size      (int)   Size (in taps) of the filter
00103    * \param bandwidth        (float) Loop bandwidth
00104    */
00105   friend DIGITAL_API digital_fll_band_edge_cc_sptr
00106     digital_make_fll_band_edge_cc(float samps_per_sym,
00107                                   float rolloff,
00108                                   int filter_size,
00109                                   float bandwidth);
00110 
00111   float                   d_sps;
00112   float                   d_rolloff;
00113   int                     d_filter_size;
00114 
00115   std::vector<gr_complex> d_taps_lower;
00116   std::vector<gr_complex> d_taps_upper;
00117   bool                    d_updated;
00118   filter_t*               d_filter_lower;
00119   filter_t*               d_filter_upper;
00120   std::vector<gr_complex> d_output_hist;
00121   std::vector<gr_complex> d_fllbuffer;
00122 
00123   /*!
00124    * Build the FLL
00125    * \param samps_per_sym (float) number of samples per symbol
00126    * \param rolloff (float) Rolloff (excess bandwidth) of signal filter
00127    * \param filter_size (int) number of filter taps to generate
00128    * \param bandwidth (float) Loop bandwidth
00129    */
00130   digital_fll_band_edge_cc(float samps_per_sym, float rolloff,
00131                            int filter_size, float bandwidth);
00132   
00133   /*!
00134    * Design the band-edge filter based on the number of samples per symbol,
00135    * filter rolloff factor, and the filter size
00136    *
00137    * \param samps_per_sym    (float) Number of samples per symbol of signal
00138    * \param rolloff          (float) Rolloff factor of signal
00139    * \param filter_size      (int)   Size (in taps) of the filter
00140    */
00141   void design_filter(float samps_per_sym, float rolloff, int filter_size);
00142 
00143 public:
00144   ~digital_fll_band_edge_cc();
00145 
00146   /*******************************************************************
00147     SET FUNCTIONS
00148   *******************************************************************/
00149   
00150   /*!
00151    * \brief Set the number of samples per symbol
00152    *
00153    * Set's the number of samples per symbol the system should
00154    * use. This value is uesd to calculate the filter taps and will
00155    * force a recalculation.
00156    *
00157    * \param sps    (float) new samples per symbol
00158    *
00159    */
00160   void set_samples_per_symbol(float sps);
00161 
00162   /*!
00163    * \brief Set the rolloff factor of the shaping filter
00164    *
00165    * This sets the rolloff factor that is used in the pulse shaping
00166    * filter and is used to calculate the filter taps. Changing this
00167    * will force a recalculation of the filter taps.
00168    *
00169    * This should be the same value that is used in the transmitter's
00170    * pulse shaping filter. It must be between 0 and 1 and is usually
00171    * between 0.2 and 0.5 (where 0.22 and 0.35 are commonly used
00172    * values).
00173    *
00174    * \param rolloff    (float) new shaping filter rolloff factor [0,1]
00175    *
00176    */
00177   void set_rolloff(float rolloff);
00178 
00179   /*!
00180    * \brief Set the number of taps in the filter
00181    *
00182    * This sets the number of taps in the band-edge filters. Setting
00183    * this will force a recalculation of the filter taps.
00184    *
00185    * This should be about the same number of taps used in the
00186    * transmitter's shaping filter and also not very large. A large
00187    * number of taps will result in a large delay between input and
00188    * frequency estimation, and so will not be as accurate. Between 30
00189    * and 70 taps is usual.
00190    *
00191    * \param filter_size    (float) number of taps in the filters
00192    *
00193    */
00194   void set_filter_size(int filter_size);
00195 
00196   /*******************************************************************
00197     GET FUNCTIONS
00198   *******************************************************************/
00199 
00200   /*!
00201    * \brief Returns the number of sampler per symbol used for the filter
00202    */
00203   float get_samples_per_symbol() const;
00204 
00205   /*!
00206    * \brief Returns the rolloff factor used for the filter
00207    */
00208   float get_rolloff() const;
00209 
00210   /*!
00211    * \brief Returns the number of taps of the filter
00212    */
00213   int get_filter_size() const;
00214 
00215   /*!
00216    * Print the taps to screen.
00217    */
00218   void print_taps();
00219    
00220   int work(int noutput_items,
00221            gr_vector_const_void_star &input_items,
00222            gr_vector_void_star &output_items);
00223 };
00224 
00225 #endif