GNU Radio 3.6.5 C++ API

cpm.h

Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2010,2012 Free Software Foundation, Inc.
00004  *
00005  * GNU Radio is free software; you can redistribute it and/or modify
00006  * it under the terms of the GNU General Public License as published by
00007  * the Free Software Foundation; either version 3, or (at your option)
00008  * any later version.
00009  *
00010  * GNU Radio is distributed in the hope that it will be useful,
00011  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00012  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00013  * GNU General Public License for more details.
00014  *
00015  * You should have received a copy of the GNU General Public License
00016  * along with GNU Radio; see the file COPYING.  If not, write to
00017  * the Free Software Foundation, Inc., 51 Franklin Street,
00018  * Boston, MA 02110-1301, USA.
00019  */
00020 
00021 
00022 #ifndef INCLUDED_ANALOG_CPM_H
00023 #define INCLUDED_ANALOG_CPM_H
00024 
00025 #include <analog/api.h>
00026 #include <vector>
00027 
00028 namespace gr {
00029   namespace analog {
00030 
00031     class ANALOG_API cpm
00032     {
00033     public:
00034       enum cpm_type {
00035         LRC,
00036         LSRC,
00037         LREC,
00038         TFM,
00039         GAUSSIAN,
00040         GENERIC = 999
00041       };
00042       
00043       /*! \brief Return the taps for an interpolating FIR filter (gr_interp_fir_filter_fff).
00044        *
00045        * \details
00046        * These taps represent the phase response \f$g(k)\f$ for use in a CPM modulator,
00047        * see also gr_cpmmod_bc.
00048        *
00049        * \param type The CPM type (Rectangular, Raised Cosine, Spectral Raised Cosine,
00050        *             Tamed FM or Gaussian).
00051        * \param samples_per_sym Samples per symbol.
00052        * \param L The length of the phase response in symbols.
00053        * \param beta For Spectral Raised Cosine, this is the rolloff factor. For Gaussian
00054        *             phase responses, this the 3dB-time-bandwidth product. For all other
00055        *             cases, it is ignored.
00056        *
00057        * Output: returns a vector of length \a K = \p samples_per_sym x \p L.
00058        *         This can be used directly in an interpolating FIR filter such as
00059        *         gr_interp_fir_filter_fff with interpolation factor \p samples_per_sym.
00060        *
00061        * All phase responses are normalised s.t. \f$ \sum_{k=0}^{K-1} g(k) = 1\f$; this will cause
00062        * a maximum phase change of \f$ h \cdot \pi\f$ between two symbols, where \a h is the
00063        * modulation index.
00064        *
00065        * The following phase responses can be generated:
00066        * - LREC: Rectangular phase response.
00067        * - LRC: Raised cosine phase response, looks like 1 - cos(x).
00068        * - LSRC: Spectral raised cosine. This requires a rolloff factor beta.
00069        *         The phase response is the Fourier transform of raised cosine
00070        *         function.
00071        * - TFM: Tamed frequency modulation. This scheme minimizes phase change for
00072        *        rapidly varying input symbols.
00073        * - GAUSSIAN: A Gaussian phase response. For a modulation index h = 1/2, this
00074        *             results in GMSK.
00075        *
00076        * A short description of all these phase responses can be found in [1].
00077        *
00078        * [1]: Anderson, Aulin and Sundberg; Digital Phase Modulation
00079        */
00080       static std::vector<float>
00081         phase_response(cpm_type type, unsigned samples_per_sym, unsigned L, double beta=0.3);
00082     };
00083   } // namespace analog
00084 } // namespace gr
00085 
00086 #endif /* INCLUDED_ANALOG_CPM_H */
00087