GNU Radio 3.6.5 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2006,2012 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 #ifndef INCLUDED_ANALOG_AGC2_H 00024 #define INCLUDED_ANALOG_AGC2_H 00025 00026 #include <analog/api.h> 00027 #include <gr_complex.h> 00028 #include <math.h> 00029 00030 namespace gr { 00031 namespace analog { 00032 namespace kernel { 00033 00034 /*! 00035 * \brief high performance Automatic Gain Control class 00036 * 00037 * \details 00038 * For Power the absolute value of the complex number is used. 00039 */ 00040 class ANALOG_API agc2_cc 00041 { 00042 public: 00043 agc2_cc(float attack_rate = 1e-1, float decay_rate = 1e-2, 00044 float reference = 1.0, 00045 float gain = 1.0, float max_gain = 0.0) 00046 : _attack_rate(attack_rate), _decay_rate(decay_rate), 00047 _reference(reference), 00048 _gain(gain), _max_gain(max_gain) {}; 00049 00050 float decay_rate() const { return _decay_rate; } 00051 float attack_rate() const { return _attack_rate; } 00052 float reference() const { return _reference; } 00053 float gain() const { return _gain; } 00054 float max_gain() const { return _max_gain; } 00055 00056 void set_decay_rate(float rate) { _decay_rate = rate; } 00057 void set_attack_rate(float rate) { _attack_rate = rate; } 00058 void set_reference(float reference) { _reference = reference; } 00059 void set_gain(float gain) { _gain = gain; } 00060 void set_max_gain(float max_gain) { _max_gain = max_gain; } 00061 00062 gr_complex scale(gr_complex input) 00063 { 00064 gr_complex output = input * _gain; 00065 00066 float tmp = -_reference + sqrt(output.real()*output.real() + 00067 output.imag()*output.imag()); 00068 float rate = _decay_rate; 00069 if((tmp) > _gain) { 00070 rate = _attack_rate; 00071 } 00072 _gain -= tmp*rate; 00073 00074 // Not sure about this; will blow up if _gain < 0 (happens 00075 // when rates are too high), but is this the solution? 00076 if(_gain < 0.0) 00077 _gain = 10e-5; 00078 00079 if(_max_gain > 0.0 && _gain > _max_gain) { 00080 _gain = _max_gain; 00081 } 00082 return output; 00083 } 00084 00085 void scaleN(gr_complex output[], const gr_complex input[], unsigned n) 00086 { 00087 for(unsigned i = 0; i < n; i++) 00088 output[i] = scale (input[i]); 00089 } 00090 00091 protected: 00092 float _attack_rate; // attack rate for fast changing signals 00093 float _decay_rate; // decay rate for slow changing signals 00094 float _reference; // reference value 00095 float _gain; // current gain 00096 float _max_gain; // max allowable gain 00097 }; 00098 00099 00100 class ANALOG_API agc2_ff 00101 { 00102 public: 00103 agc2_ff(float attack_rate = 1e-1, float decay_rate = 1e-2, 00104 float reference = 1.0, 00105 float gain = 1.0, float max_gain = 0.0) 00106 : _attack_rate(attack_rate), _decay_rate(decay_rate), 00107 _reference(reference), 00108 _gain(gain), _max_gain(max_gain) {}; 00109 00110 float attack_rate() const { return _attack_rate; } 00111 float decay_rate() const { return _decay_rate; } 00112 float reference() const { return _reference; } 00113 float gain() const { return _gain; } 00114 float max_gain() const { return _max_gain; } 00115 00116 void set_attack_rate(float rate) { _attack_rate = rate; } 00117 void set_decay_rate(float rate) { _decay_rate = rate; } 00118 void set_reference(float reference) { _reference = reference; } 00119 void set_gain(float gain) { _gain = gain; } 00120 void set_max_gain(float max_gain) { _max_gain = max_gain; } 00121 00122 float scale(float input) 00123 { 00124 float output = input * _gain; 00125 00126 float tmp = (fabsf(output)) - _reference; 00127 float rate = _decay_rate; 00128 if(fabsf(tmp) > _gain) { 00129 rate = _attack_rate; 00130 } 00131 _gain -= tmp*rate; 00132 00133 // Not sure about this 00134 if(_gain < 0.0) 00135 _gain = 10e-5; 00136 00137 if(_max_gain > 0.0 && _gain > _max_gain) { 00138 _gain = _max_gain; 00139 } 00140 return output; 00141 } 00142 00143 void scaleN(float output[], const float input[], unsigned n) 00144 { 00145 for(unsigned i = 0; i < n; i++) 00146 output[i] = scale (input[i]); 00147 } 00148 00149 protected: 00150 float _attack_rate; // attack_rate for fast changing signals 00151 float _decay_rate; // decay rate for slow changing signals 00152 float _reference; // reference value 00153 float _gain; // current gain 00154 float _max_gain; // maximum gain 00155 }; 00156 00157 } /* namespace kernel */ 00158 } /* namespace analog */ 00159 } /* namespace gr */ 00160 00161 #endif /* INCLUDED_ANALOG_AGC2_H */