GNU Radio 3.5.3.2 C++ API
|
00001 #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H 00002 #define INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H 00003 00004 #include <volk/volk_common.h> 00005 #include <volk/volk_complex.h> 00006 #include <stdio.h> 00007 #include <string.h> 00008 00009 00010 #ifdef LV_HAVE_GENERIC 00011 00012 00013 static inline void volk_32fc_x2_dot_prod_32fc_u_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00014 00015 float * res = (float*) result; 00016 float * in = (float*) input; 00017 float * tp = (float*) taps; 00018 unsigned int n_2_ccomplex_blocks = num_points/2; 00019 unsigned int isodd = num_points &1; 00020 00021 00022 00023 float sum0[2] = {0,0}; 00024 float sum1[2] = {0,0}; 00025 unsigned int i = 0; 00026 00027 00028 for(i = 0; i < n_2_ccomplex_blocks; ++i) { 00029 00030 00031 sum0[0] += in[0] * tp[0] - in[1] * tp[1]; 00032 sum0[1] += in[0] * tp[1] + in[1] * tp[0]; 00033 sum1[0] += in[2] * tp[2] - in[3] * tp[3]; 00034 sum1[1] += in[2] * tp[3] + in[3] * tp[2]; 00035 00036 00037 in += 4; 00038 tp += 4; 00039 00040 } 00041 00042 00043 res[0] = sum0[0] + sum1[0]; 00044 res[1] = sum0[1] + sum1[1]; 00045 00046 00047 00048 for(i = 0; i < isodd; ++i) { 00049 00050 00051 *result += input[num_points - 1] * taps[num_points - 1]; 00052 00053 } 00054 00055 } 00056 00057 #endif /*LV_HAVE_GENERIC*/ 00058 00059 #ifdef LV_HAVE_SSE3 00060 00061 #include <pmmintrin.h> 00062 00063 static inline void volk_32fc_x2_dot_prod_32fc_u_sse3(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00064 00065 00066 lv_32fc_t dotProduct; 00067 memset(&dotProduct, 0x0, 2*sizeof(float)); 00068 00069 unsigned int number = 0; 00070 const unsigned int halfPoints = num_points/2; 00071 00072 __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal; 00073 00074 const lv_32fc_t* a = input; 00075 const lv_32fc_t* b = taps; 00076 00077 dotProdVal = _mm_setzero_ps(); 00078 00079 for(;number < halfPoints; number++){ 00080 00081 x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi 00082 y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di 00083 00084 yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr 00085 yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di 00086 00087 tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr 00088 00089 x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br 00090 00091 tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di 00092 00093 z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di 00094 00095 dotProdVal = _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together 00096 00097 a += 2; 00098 b += 2; 00099 } 00100 00101 __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2]; 00102 00103 _mm_storeu_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector 00104 00105 dotProduct += ( dotProductVector[0] + dotProductVector[1] ); 00106 00107 if(num_points % 1 != 0) { 00108 dotProduct += (*a) * (*b); 00109 } 00110 00111 *result = dotProduct; 00112 } 00113 00114 #endif /*LV_HAVE_SSE3*/ 00115 00116 #endif /*INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H*/