GNU Radio 3.5.3.2 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2008,2010 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 #ifndef INCLUDED_GRI_LFSR_H 00024 #define INCLUDED_GRI_LFSR_H 00025 00026 #include <gr_core_api.h> 00027 #include <stdexcept> 00028 #include <stdint.h> 00029 00030 /*! 00031 * \brief Fibonacci Linear Feedback Shift Register using specified polynomial mask 00032 * \ingroup misc 00033 * 00034 * Generates a maximal length pseudo-random sequence of length 2^degree-1 00035 * 00036 * Constructor: gri_lfsr(int mask, int seed, int reg_len); 00037 * 00038 * mask - polynomial coefficients representing the locations 00039 * of feedback taps from a shift register which are xor'ed 00040 * together to form the new high order bit. 00041 * 00042 * Some common masks might be: 00043 * x^4 + x^3 + x^0 = 0x19 00044 * x^5 + x^3 + x^0 = 0x29 00045 * x^6 + x^5 + x^0 = 0x61 00046 * 00047 * seed - the initialization vector placed into the register 00048 * durring initialization. Low order bit corresponds 00049 * to x^0 coefficient -- the first to be shifted as output. 00050 * 00051 * reg_len - specifies the length of the feedback shift register 00052 * to be used. Durring each iteration, the register 00053 * is rightshifted one and the new bit is placed in bit reg_len. 00054 * reg_len should generally be at least order(mask) + 1 00055 * 00056 * 00057 * see http://en.wikipedia.org/wiki/Linear_feedback_shift_register 00058 * for more explanation. 00059 * 00060 * 00061 * 00062 * next_bit() - Standard LFSR operation 00063 * 00064 * Perform one cycle of the LFSR. The output bit is taken from 00065 * the shift register LSB. The shift register MSB is assigned from 00066 * the modulo 2 sum of the masked shift register. 00067 * 00068 * next_bit_scramble(unsigned char input) - Scramble an input stream 00069 * 00070 * Perform one cycle of the LFSR. The output bit is taken from 00071 * the shift register LSB. The shift register MSB is assigned from 00072 * the modulo 2 sum of the masked shift register and the input LSB. 00073 * 00074 * next_bit_descramble(unsigned char input) - Descramble an input stream 00075 * 00076 * Perform one cycle of the LFSR. The output bit is taken from 00077 * the modulo 2 sum of the masked shift register and the input LSB. 00078 * The shift register MSB is assigned from the LSB of the input. 00079 * 00080 * See http://en.wikipedia.org/wiki/Scrambler for operation of these 00081 * last two functions (see multiplicative scrambler.) 00082 * 00083 */ 00084 00085 class GR_CORE_API gri_lfsr 00086 { 00087 private: 00088 uint32_t d_shift_register; 00089 uint32_t d_mask; 00090 uint32_t d_seed; 00091 uint32_t d_shift_register_length; // less than 32 00092 00093 static uint32_t 00094 popCount(uint32_t x) 00095 { 00096 uint32_t r = x - ((x >> 1) & 033333333333) 00097 - ((x >> 2) & 011111111111); 00098 return ((r + (r >> 3)) & 030707070707) % 63; 00099 } 00100 00101 public: 00102 00103 gri_lfsr(uint32_t mask, uint32_t seed, uint32_t reg_len) 00104 : d_shift_register(seed), 00105 d_mask(mask), 00106 d_seed(seed), 00107 d_shift_register_length(reg_len) 00108 { 00109 if (reg_len > 31) 00110 throw std::invalid_argument("reg_len must be <= 31"); 00111 } 00112 00113 unsigned char next_bit() { 00114 unsigned char output = d_shift_register & 1; 00115 unsigned char newbit = popCount( d_shift_register & d_mask )%2; 00116 d_shift_register = ((d_shift_register>>1) | (newbit<<d_shift_register_length)); 00117 return output; 00118 } 00119 00120 unsigned char next_bit_scramble(unsigned char input) { 00121 unsigned char output = d_shift_register & 1; 00122 unsigned char newbit = (popCount( d_shift_register & d_mask )%2)^(input & 1); 00123 d_shift_register = ((d_shift_register>>1) | (newbit<<d_shift_register_length)); 00124 return output; 00125 } 00126 00127 unsigned char next_bit_descramble(unsigned char input) { 00128 unsigned char output = (popCount( d_shift_register & d_mask )%2)^(input & 1); 00129 unsigned char newbit = input & 1; 00130 d_shift_register = ((d_shift_register>>1) | (newbit<<d_shift_register_length)); 00131 return output; 00132 } 00133 00134 /*! 00135 * Reset shift register to initial seed value 00136 */ 00137 void reset() { d_shift_register = d_seed; } 00138 00139 /*! 00140 * Rotate the register through x number of bits 00141 * where we are just throwing away the results to get queued up correctly 00142 */ 00143 void pre_shift(int num){ 00144 for(int i=0; i<num; i++){ 00145 next_bit(); 00146 } 00147 } 00148 00149 int mask() const { return d_mask; } 00150 }; 00151 00152 #endif /* INCLUDED_GRI_LFSR_H */