GNU Radio 3.5.3.2 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2009,2010 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 00024 #ifndef INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H 00025 #define INCLUDED_GR_PFB_CLOCK_SYNC_CCF_H 00026 00027 #include <gr_core_api.h> 00028 #include <gr_block.h> 00029 00030 class gr_pfb_clock_sync_ccf; 00031 typedef boost::shared_ptr<gr_pfb_clock_sync_ccf> gr_pfb_clock_sync_ccf_sptr; 00032 GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw, 00033 const std::vector<float> &taps, 00034 unsigned int filter_size=32, 00035 float init_phase=0, 00036 float max_rate_deviation=1.5, 00037 int osps=1); 00038 00039 class gr_fir_ccf; 00040 00041 /*! 00042 * \class gr_pfb_clock_sync_ccf 00043 * 00044 * \brief Timing synchronizer using polyphase filterbanks 00045 * 00046 * \ingroup filter_blk 00047 * \ingroup pfb_blk 00048 * 00049 * This block performs timing synchronization for PAM signals by 00050 * minimizing the derivative of the filtered signal, which in turn 00051 * maximizes the SNR and minimizes ISI. 00052 * 00053 * This approach works by setting up two filterbanks; one filterbank 00054 * contains the signal's pulse shaping matched filter (such as a root 00055 * raised cosine filter), where each branch of the filterbank contains 00056 * a different phase of the filter. The second filterbank contains 00057 * the derivatives of the filters in the first filterbank. Thinking of 00058 * this in the time domain, the first filterbank contains filters that 00059 * have a sinc shape to them. We want to align the output signal to be 00060 * sampled at exactly the peak of the sinc shape. The derivative of 00061 * the sinc contains a zero at the maximum point of the sinc (sinc(0) 00062 * = 1, sinc(0)' = 0). Furthermore, the region around the zero point 00063 * is relatively linear. We make use of this fact to generate the 00064 * error signal. 00065 * 00066 * If the signal out of the derivative filters is d_i[n] for the ith 00067 * filter, and the output of the matched filter is x_i[n], we 00068 * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} + 00069 * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error in 00070 * the real and imaginary parts. There are two reasons we multiply by 00071 * the signal itself. First, if the symbol could be positive or 00072 * negative going, but we want the error term to always tell us to go 00073 * in the same direction depending on which side of the zero point we 00074 * are on. The sign of x_i[n] adjusts the error term to do 00075 * this. Second, the magnitude of x_i[n] scales the error term 00076 * depending on the symbol's amplitude, so larger signals give us a 00077 * stronger error term because we have more confidence in that 00078 * symbol's value. Using the magnitude of x_i[n] instead of just the 00079 * sign is especially good for signals with low SNR. 00080 * 00081 * The error signal, e[n], gives us a value proportional to how far 00082 * away from the zero point we are in the derivative signal. We want 00083 * to drive this value to zero, so we set up a second order loop. We 00084 * have two variables for this loop; d_k is the filter number in the 00085 * filterbank we are on and d_rate is the rate which we travel through 00086 * the filters in the steady state. That is, due to the natural clock 00087 * differences between the transmitter and receiver, d_rate represents 00088 * that difference and would traverse the filter phase paths to keep 00089 * the receiver locked. Thinking of this as a second-order PLL, the 00090 * d_rate is the frequency and d_k is the phase. So we update d_rate 00091 * and d_k using the standard loop equations based on two error 00092 * signals, d_alpha and d_beta. We have these two values set based on 00093 * each other for a critically damped system, so in the block 00094 * constructor, we just ask for "gain," which is d_alpha while d_beta 00095 * is equal to (gain^2)/4. 00096 * 00097 * The block's parameters are: 00098 * 00099 * \li \p sps: The clock sync block needs to know the number of samples per 00100 * symbol, because it defaults to return a single point representing 00101 * the symbol. The sps can be any positive real number and does not 00102 * need to be an integer. 00103 * 00104 * \li \p loop_bw: The loop bandwidth is used to set the gain of the 00105 * inner control loop (see: 00106 * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html). 00107 * This should be set small (a value of around 2pi/100 is suggested in 00108 * that blog post as the step size for the number of radians around 00109 * the unit circle to move relative to the error). 00110 * 00111 * \li \p taps: One of the most important parameters for this block is 00112 * the taps of the filter. One of the benefits of this algorithm is 00113 * that you can put the matched filter in here as the taps, so you get 00114 * both the matched filter and sample timing correction in one go. So 00115 * create your normal matched filter. For a typical digital 00116 * modulation, this is a root raised cosine filter. The number of taps 00117 * of this filter is based on how long you expect the channel to be; 00118 * that is, how many symbols do you want to combine to get the current 00119 * symbols energy back (there's probably a better way of stating 00120 * that). It's usually 5 to 10 or so. That gives you your filter, but 00121 * now we need to think about it as a filter with different phase 00122 * profiles in each filter. So take this number of taps and multiply 00123 * it by the number of filters. This is the number you would use to 00124 * create your prototype filter. When you use this in the PFB 00125 * filerbank, it segments these taps into the filterbanks in such a 00126 * way that each bank now represents the filter at different phases, 00127 * equally spaced at 2pi/N, where N is the number of filters. 00128 * 00129 * \li \p filter_size (default=32): The number of filters can also be 00130 * set and defaults to 32. With 32 filters, you get a good enough 00131 * resolution in the phase to produce very small, almost unnoticeable, 00132 * ISI. Going to 64 filters can reduce this more, but after that 00133 * there is very little gained for the extra complexity. 00134 * 00135 * \li \p init_phase (default=0): The initial phase is another 00136 * settable parameter and refers to the filter path the algorithm 00137 * initially looks at (i.e., d_k starts at init_phase). This value 00138 * defaults to zero, but it might be useful to start at a different 00139 * phase offset, such as the mid-point of the filters. 00140 * 00141 * \li \p max_rate_deviation (default=1.5): The next parameter is the 00142 * max_rate_devitation, which defaults to 1.5. This is how far we 00143 * allow d_rate to swing, positive or negative, from 0. Constraining 00144 * the rate can help keep the algorithm from walking too far away to 00145 * lock during times when there is no signal. 00146 * 00147 * \li \p osps (default=1): The osps is the number of output samples per symbol. By default, 00148 * the algorithm produces 1 sample per symbol, sampled at the exact 00149 * sample value. This osps value was added to better work with 00150 * equalizers, which do a better job of modeling the channel if they 00151 * have 2 samps/sym. 00152 */ 00153 00154 class GR_CORE_API gr_pfb_clock_sync_ccf : public gr_block 00155 { 00156 private: 00157 /*! 00158 * Build the polyphase filterbank timing synchronizer. 00159 * \param sps (double) The number of samples per symbol in the incoming signal 00160 * \param loop_bw (float) The bandwidth of the control loop; set's alpha and beta. 00161 * \param taps (vector<int>) The filter taps. 00162 * \param filter_size (uint) The number of filters in the filterbank (default = 32). 00163 * \param init_phase (float) The initial phase to look at, or which filter to start 00164 * with (default = 0). 00165 * \param max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5). 00166 * \param osps (int) The number of output samples per symbol (default=1). 00167 * 00168 */ 00169 00170 friend GR_CORE_API gr_pfb_clock_sync_ccf_sptr gr_make_pfb_clock_sync_ccf (double sps, float loop_bw, 00171 const std::vector<float> &taps, 00172 unsigned int filter_size, 00173 float init_phase, 00174 float max_rate_deviation, 00175 int osps); 00176 00177 bool d_updated; 00178 double d_sps; 00179 double d_sample_num; 00180 float d_loop_bw; 00181 float d_damping; 00182 float d_alpha; 00183 float d_beta; 00184 00185 int d_nfilters; 00186 int d_taps_per_filter; 00187 std::vector<gr_fir_ccf*> d_filters; 00188 std::vector<gr_fir_ccf*> d_diff_filters; 00189 std::vector< std::vector<float> > d_taps; 00190 std::vector< std::vector<float> > d_dtaps; 00191 00192 float d_k; 00193 float d_rate; 00194 float d_rate_i; 00195 float d_rate_f; 00196 float d_max_dev; 00197 int d_filtnum; 00198 int d_osps; 00199 float d_error; 00200 int d_out_idx; 00201 00202 /*! 00203 * Build the polyphase filterbank timing synchronizer. 00204 */ 00205 gr_pfb_clock_sync_ccf (double sps, float loop_bw, 00206 const std::vector<float> &taps, 00207 unsigned int filter_size, 00208 float init_phase, 00209 float max_rate_deviation, 00210 int osps); 00211 00212 void create_diff_taps(const std::vector<float> &newtaps, 00213 std::vector<float> &difftaps); 00214 00215 public: 00216 ~gr_pfb_clock_sync_ccf (); 00217 00218 /*! \brief update the system gains from omega and eta 00219 * 00220 * This function updates the system gains based on the loop 00221 * bandwidth and damping factor of the system. 00222 * These two factors can be set separately through their own 00223 * set functions. 00224 */ 00225 void update_gains(); 00226 00227 /*! 00228 * Resets the filterbank's filter taps with the new prototype filter 00229 */ 00230 void set_taps (const std::vector<float> &taps, 00231 std::vector< std::vector<float> > &ourtaps, 00232 std::vector<gr_fir_ccf*> &ourfilter); 00233 00234 /*! 00235 * Returns all of the taps of the matched filter 00236 */ 00237 std::vector< std::vector<float> > get_taps(); 00238 00239 /*! 00240 * Returns all of the taps of the derivative filter 00241 */ 00242 std::vector< std::vector<float> > get_diff_taps(); 00243 00244 /*! 00245 * Returns the taps of the matched filter for a particular channel 00246 */ 00247 std::vector<float> get_channel_taps(int channel); 00248 00249 /*! 00250 * Returns the taps in the derivative filter for a particular channel 00251 */ 00252 std::vector<float> get_diff_channel_taps(int channel); 00253 00254 /*! 00255 * Return the taps as a formatted string for printing 00256 */ 00257 std::string get_taps_as_string(); 00258 00259 /*! 00260 * Return the derivative filter taps as a formatted string for printing 00261 */ 00262 std::string get_diff_taps_as_string(); 00263 00264 00265 /******************************************************************* 00266 SET FUNCTIONS 00267 *******************************************************************/ 00268 00269 00270 /*! 00271 * \brief Set the loop bandwidth 00272 * 00273 * Set the loop filter's bandwidth to \p bw. This should be between 00274 * 2*pi/200 and 2*pi/100 (in rads/samp). It must also be a positive 00275 * number. 00276 * 00277 * When a new damping factor is set, the gains, alpha and beta, of the loop 00278 * are recalculated by a call to update_gains(). 00279 * 00280 * \param bw (float) new bandwidth 00281 * 00282 */ 00283 void set_loop_bandwidth(float bw); 00284 00285 /*! 00286 * \brief Set the loop damping factor 00287 * 00288 * Set the loop filter's damping factor to \p df. The damping factor 00289 * should be sqrt(2)/2.0 for critically damped systems. 00290 * Set it to anything else only if you know what you are doing. It must 00291 * be a number between 0 and 1. 00292 * 00293 * When a new damping factor is set, the gains, alpha and beta, of the loop 00294 * are recalculated by a call to update_gains(). 00295 * 00296 * \param df (float) new damping factor 00297 * 00298 */ 00299 void set_damping_factor(float df); 00300 00301 /*! 00302 * \brief Set the loop gain alpha 00303 * 00304 * Set's the loop filter's alpha gain parameter. 00305 * 00306 * This value should really only be set by adjusting the loop bandwidth 00307 * and damping factor. 00308 * 00309 * \param alpha (float) new alpha gain 00310 * 00311 */ 00312 void set_alpha(float alpha); 00313 00314 /*! 00315 * \brief Set the loop gain beta 00316 * 00317 * Set's the loop filter's beta gain parameter. 00318 * 00319 * This value should really only be set by adjusting the loop bandwidth 00320 * and damping factor. 00321 * 00322 * \param beta (float) new beta gain 00323 * 00324 */ 00325 void set_beta(float beta); 00326 00327 /*! 00328 * Set the maximum deviation from 0 d_rate can have 00329 */ 00330 void set_max_rate_deviation(float m) 00331 { 00332 d_max_dev = m; 00333 } 00334 00335 /******************************************************************* 00336 GET FUNCTIONS 00337 *******************************************************************/ 00338 00339 /*! 00340 * \brief Returns the loop bandwidth 00341 */ 00342 float get_loop_bandwidth() const; 00343 00344 /*! 00345 * \brief Returns the loop damping factor 00346 */ 00347 float get_damping_factor() const; 00348 00349 /*! 00350 * \brief Returns the loop gain alpha 00351 */ 00352 float get_alpha() const; 00353 00354 /*! 00355 * \brief Returns the loop gain beta 00356 */ 00357 float get_beta() const; 00358 00359 /*! 00360 * \brief Returns the current clock rate 00361 */ 00362 float get_clock_rate() const; 00363 00364 /******************************************************************* 00365 *******************************************************************/ 00366 00367 bool check_topology(int ninputs, int noutputs); 00368 00369 int general_work (int noutput_items, 00370 gr_vector_int &ninput_items, 00371 gr_vector_const_void_star &input_items, 00372 gr_vector_void_star &output_items); 00373 }; 00374 00375 #endif