GNU Radio 3.5.3.2 C++ API
gr_pfb_channelizer_ccf.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2010 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_GR_PFB_CHANNELIZER_CCF_H
00025 #define INCLUDED_GR_PFB_CHANNELIZER_CCF_H
00026 
00027 #include <gr_core_api.h>
00028 #include <gr_block.h>
00029 
00030 class gr_pfb_channelizer_ccf;
00031 typedef boost::shared_ptr<gr_pfb_channelizer_ccf> gr_pfb_channelizer_ccf_sptr;
00032 GR_CORE_API gr_pfb_channelizer_ccf_sptr gr_make_pfb_channelizer_ccf (unsigned int numchans, 
00033                                                          const std::vector<float> &taps,
00034                                                          float oversample_rate=1);
00035 
00036 class gr_fir_ccf;
00037 class gri_fft_complex;
00038 
00039 
00040 /*!
00041  * \class gr_pfb_channelizer_ccf
00042  *
00043  * \brief Polyphase filterbank channelizer with 
00044  *        gr_complex input, gr_complex output and float taps
00045  *
00046  * \ingroup filter_blk
00047  * \ingroup pfb_blk
00048  *
00049  * This block takes in complex inputs and channelizes it to <EM>M</EM>
00050  * channels of equal bandwidth. Each of the resulting channels is
00051  * decimated to the new rate that is the input sampling rate
00052  * <EM>fs</EM> divided by the number of channels, <EM>M</EM>.
00053  *
00054  * The PFB channelizer code takes the taps generated above and builds
00055  * a set of filters. The set contains <EM>M</EM> number of filters
00056  * and each filter contains ceil(taps.size()/decim) number of taps.
00057  * Each tap from the filter prototype is sequentially inserted into
00058  * the next filter. When all of the input taps are used, the remaining
00059  * filters in the filterbank are filled out with 0's to make sure each
00060  * filter has the same number of taps.
00061  *
00062  * Each filter operates using the gr_fir filter classs of GNU Radio,
00063  * which takes the input stream at <EM>i</EM> and performs the inner
00064  * product calculation to <EM>i+(n-1)</EM> where <EM>n</EM> is the
00065  * number of filter taps. To efficiently handle this in the GNU Radio
00066  * structure, each filter input must come from its own input
00067  * stream. So the channelizer must be provided with <EM>M</EM> streams
00068  * where the input stream has been deinterleaved. This is most easily
00069  * done using the gr_stream_to_streams block.
00070  *
00071  * The output is then produced as a vector, where index <EM>i</EM> in
00072  * the vector is the next sample from the <EM>i</EM>th channel. This
00073  * is most easily handled by sending the output to a
00074  * gr_vector_to_streams block to handle the conversion and passing
00075  * <EM>M</EM> streams out.
00076  *
00077  * The input and output formatting is done using a hier_block2 called
00078  * pfb_channelizer_ccf. This can take in a single stream and outputs
00079  * <EM>M</EM> streams based on the behavior described above.
00080  *
00081  * The filter's taps should be based on the input sampling rate.
00082  *
00083  * For example, using the GNU Radio's firdes utility to building
00084  * filters, we build a low-pass filter with a sampling rate of 
00085  * <EM>fs</EM>, a 3-dB bandwidth of <EM>BW</EM> and a transition
00086  * bandwidth of <EM>TB</EM>. We can also specify the out-of-band
00087  * attenuation to use, <EM>ATT</EM>, and the filter window
00088  * function (a Blackman-harris window in this case). The first input
00089  *  is the gain of the filter, which we specify here as unity.
00090  *
00091  *      <B><EM>self._taps = gr.firdes.low_pass_2(1, fs, BW, TB, 
00092  *           attenuation_dB=ATT, window=gr.firdes.WIN_BLACKMAN_hARRIS)</EM></B>
00093  *
00094  * The filter output can also be overs ampled. The over sampling rate 
00095  * is the ratio of the the actual output sampling rate to the normal 
00096  * output sampling rate. It must be rationally related to the number 
00097  * of channels as N/i for i in [1,N], which gives an outputsample rate
00098  * of [fs/N, fs] where fs is the input sample rate and N is the number
00099  * of channels.
00100  *
00101  * For example, for 6 channels with fs = 6000 Hz, the normal rate is 
00102  * 6000/6 = 1000 Hz. Allowable oversampling rates are 6/6, 6/5, 6/4, 
00103  * 6/3, 6/2, and 6/1 where the output sample rate of a 6/1 oversample
00104  * ratio is 6000 Hz, or 6 times the normal 1000 Hz. A rate of 6/5 = 1.2,
00105  * so the output rate would be 1200 Hz.
00106  *
00107  * The theory behind this block can be found in Chapter 6 of 
00108  * the following book.
00109  *
00110  *    <B><EM>f. harris, "Multirate Signal Processing for Communication 
00111  *       Systems," Upper Saddle River, NJ: Prentice Hall, Inc. 2004.</EM></B>
00112  *
00113  */
00114 
00115 class GR_CORE_API gr_pfb_channelizer_ccf : public gr_block
00116 {
00117  private:
00118   /*!
00119    * Build the polyphase filterbank decimator.
00120    * \param numchans (unsigned integer) Specifies the number of channels <EM>M</EM>
00121    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00122    * \param oversample_rate (float)   The over sampling rate is the ratio of the the actual
00123    *                                  output sampling rate to the normal output sampling rate.
00124    *                                   It must be rationally related to the number of channels
00125    *                                  as N/i for i in [1,N], which gives an outputsample rate 
00126    *                                  of [fs/N, fs] where fs is the input sample rate and N is
00127    *                                  the number of channels.
00128    *                                  
00129    *                                  For example, for 6 channels with fs = 6000 Hz, the normal
00130    *                                  rate is 6000/6 = 1000 Hz. Allowable oversampling rates
00131    *                                  are 6/6, 6/5, 6/4, 6/3, 6/2, and 6/1 where the output
00132    *                                  sample rate of a 6/1 oversample ratio is 6000 Hz, or
00133    *                                  6 times the normal 1000 Hz.
00134    */
00135   friend GR_CORE_API gr_pfb_channelizer_ccf_sptr gr_make_pfb_channelizer_ccf (unsigned int numchans,
00136                                                                   const std::vector<float> &taps,
00137                                                                   float oversample_rate);
00138 
00139   bool                     d_updated;
00140   unsigned int             d_numchans;
00141   float                    d_oversample_rate;
00142   std::vector<gr_fir_ccf*> d_filters;
00143   std::vector< std::vector<float> > d_taps;
00144   unsigned int             d_taps_per_filter;
00145   gri_fft_complex         *d_fft;
00146   int                     *d_idxlut;
00147   int                      d_rate_ratio;
00148   int                      d_output_multiple;
00149 
00150   /*!
00151    * Build the polyphase filterbank decimator.
00152    * \param numchans (unsigned integer) Specifies the number of channels <EM>M</EM>
00153    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00154    * \param oversample_rate (float)   The output over sampling rate.
00155    */
00156   gr_pfb_channelizer_ccf (unsigned int numchans, 
00157                           const std::vector<float> &taps,
00158                           float oversample_rate);
00159 
00160 public:
00161   ~gr_pfb_channelizer_ccf ();
00162   
00163   /*!
00164    * Resets the filterbank's filter taps with the new prototype filter
00165    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00166    */
00167   void set_taps (const std::vector<float> &taps);
00168 
00169   /*!
00170    * Print all of the filterbank taps to screen.
00171    */
00172   void print_taps();
00173   
00174   int general_work (int noutput_items,
00175                     gr_vector_int &ninput_items,
00176                     gr_vector_const_void_star &input_items,
00177                     gr_vector_void_star &output_items);
00178 };
00179 
00180 #endif