GNU Radio 3.5.3.2 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2002,2003 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 00023 /* 00024 * WARNING: This file is automatically generated by generate_gr_fir_XXX.py 00025 * Any changes made to this file will be overwritten. 00026 */ 00027 00028 00029 #ifndef INCLUDED_GR_FIR_FSF_H 00030 #define INCLUDED_GR_FIR_FSF_H 00031 00032 #include <gr_core_api.h> 00033 #include <vector> 00034 00035 #include <gr_reverse.h> 00036 00037 /*! 00038 * \brief Abstract class for FIR with float input, short output and float taps 00039 * \ingroup filter_primitive 00040 * 00041 * This is the abstract class for a Finite Impulse Response filter. 00042 * 00043 * The trailing suffix has the form _IOT where I codes the input type, 00044 * O codes the output type, and T codes the tap type. 00045 * I,O,T are elements of the set 's' (short), 'f' (float), 'c' (gr_complex), 'i' (int) 00046 */ 00047 00048 class GR_CORE_API gr_fir_fsf { 00049 00050 protected: 00051 std::vector<float> d_taps; // reversed taps 00052 00053 public: 00054 00055 // CONSTRUCTORS 00056 00057 /*! 00058 * \brief construct new FIR with given taps. 00059 * 00060 * Note that taps must be in forward order, e.g., coefficient 0 is 00061 * stored in new_taps[0], coefficient 1 is stored in 00062 * new_taps[1], etc. 00063 */ 00064 gr_fir_fsf () {} 00065 gr_fir_fsf (const std::vector<float> &taps) : d_taps (gr_reverse(taps)) {} 00066 00067 virtual ~gr_fir_fsf (); 00068 00069 // MANIPULATORS 00070 00071 /*! 00072 * \brief compute a single output value. 00073 * 00074 * \p input must have ntaps() valid entries. 00075 * input[0] .. input[ntaps() - 1] are referenced to compute the output value. 00076 * 00077 * \returns the filtered input value. 00078 */ 00079 virtual short filter (const float input[]) = 0; 00080 00081 /*! 00082 * \brief compute an array of N output values. 00083 * 00084 * \p input must have (n - 1 + ntaps()) valid entries. 00085 * input[0] .. input[n - 1 + ntaps() - 1] are referenced to compute the output values. 00086 */ 00087 virtual void filterN (short output[], const float input[], 00088 unsigned long n) = 0; 00089 00090 /*! 00091 * \brief compute an array of N output values, decimating the input 00092 * 00093 * \p input must have (decimate * (n - 1) + ntaps()) valid entries. 00094 * input[0] .. input[decimate * (n - 1) + ntaps() - 1] are referenced to 00095 * compute the output values. 00096 */ 00097 virtual void filterNdec (short output[], const float input[], 00098 unsigned long n, unsigned decimate) = 0; 00099 00100 /*! 00101 * \brief install \p new_taps as the current taps. 00102 */ 00103 virtual void set_taps (const std::vector<float> &taps) 00104 { 00105 d_taps = gr_reverse(taps); 00106 } 00107 00108 // ACCESSORS 00109 00110 /*! 00111 * \return number of taps in filter. 00112 */ 00113 unsigned ntaps () const { return d_taps.size (); } 00114 00115 /*! 00116 * \return current taps 00117 */ 00118 virtual const std::vector<float> get_taps () const 00119 { 00120 return gr_reverse(d_taps); 00121 } 00122 }; 00123 00124 #endif /* INCLUDED_GR_FIR_FSF_H */