GNU Radio 3.5.1 C++ API
digital_fll_band_edge_cc.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2011 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_DIGITAL_FLL_BAND_EDGE_CC_H
00025 #define INCLUDED_DIGITAL_FLL_BAND_EDGE_CC_H
00026 
00027 #include <digital_api.h>
00028 #include <gr_sync_block.h>
00029 #include <gri_control_loop.h>
00030 
00031 class digital_fll_band_edge_cc;
00032 typedef boost::shared_ptr<digital_fll_band_edge_cc> digital_fll_band_edge_cc_sptr;
00033 DIGITAL_API digital_fll_band_edge_cc_sptr digital_make_fll_band_edge_cc (float samps_per_sym,
00034                                                              float rolloff,
00035                                                              int filter_size,
00036                                                              float bandwidth);
00037 
00038 /*!
00039  * \class digital_fll_band_edge_cc
00040  * \brief Frequency Lock Loop using band-edge filters
00041  *
00042  * \ingroup general
00043  * \ingroup digital
00044  *
00045  * The frequency lock loop derives a band-edge filter that covers the
00046  * upper and lower bandwidths of a digitally-modulated signal. The
00047  * bandwidth range is determined by the excess bandwidth (e.g.,
00048  * rolloff factor) of the modulated signal. The placement in frequency
00049  * of the band-edges is determined by the oversampling ratio (number
00050  * of samples per symbol) and the excess bandwidth.  The size of the
00051  * filters should be fairly large so as to average over a number of
00052  * symbols.
00053  *
00054  * The FLL works by filtering the upper and lower band edges into
00055  * x_u(t) and x_l(t), respectively.  These are combined to form cc(t)
00056  * = x_u(t) + x_l(t) and ss(t) = x_u(t) - x_l(t). Combining these to
00057  * form the signal e(t) = Re{cc(t) \\times ss(t)^*} (where ^* is the
00058  * complex conjugate) provides an error signal at the DC term that is
00059  * directly proportional to the carrier frequency.  We then make a
00060  * second-order loop using the error signal that is the running
00061  * average of e(t).
00062  *
00063  * In practice, the above equation can be simplified by just comparing
00064  * the absolute value squared of the output of both filters:
00065  * abs(x_l(t))^2 - abs(x_u(t))^2 = norm(x_l(t)) - norm(x_u(t)).
00066  *
00067  * In theory, the band-edge filter is the derivative of the matched
00068  * filter in frequency, (H_be(f) = \\frac{H(f)}{df}. In practice, this
00069  * comes down to a quarter sine wave at the point of the matched
00070  * filter's rolloff (if it's a raised-cosine, the derivative of a
00071  * cosine is a sine).  Extend this sine by another quarter wave to
00072  * make a half wave around the band-edges is equivalent in time to the
00073  * sum of two sinc functions. The baseband filter fot the band edges
00074  * is therefore derived from this sum of sincs. The band edge filters
00075  * are then just the baseband signal modulated to the correct place in
00076  * frequency. All of these calculations are done in the
00077  * 'design_filter' function.
00078  *
00079  * Note: We use FIR filters here because the filters have to have a
00080  * flat phase response over the entire frequency range to allow their
00081  * comparisons to be valid.
00082  *
00083  * It is very important that the band edge filters be the derivatives
00084  * of the pulse shaping filter, and that they be linear
00085  * phase. Otherwise, the variance of the error will be very large.
00086  *
00087  */
00088 
00089 class DIGITAL_API digital_fll_band_edge_cc : public gr_sync_block, public gri_control_loop
00090 {
00091  private:
00092   /*!
00093    * Build the FLL
00094    * \param samps_per_sym    (float) Number of samples per symbol of signal
00095    * \param rolloff          (float) Rolloff factor of signal
00096    * \param filter_size      (int)   Size (in taps) of the filter
00097    * \param bandwidth        (float) Loop bandwidth
00098    */
00099   friend DIGITAL_API digital_fll_band_edge_cc_sptr digital_make_fll_band_edge_cc (float samps_per_sym,
00100                                                                       float rolloff,
00101                                                                       int filter_size,
00102                                                                       float bandwidth);
00103 
00104   float                   d_sps;
00105   float                   d_rolloff;
00106   int                     d_filter_size;
00107 
00108   std::vector<gr_complex> d_taps_lower;
00109   std::vector<gr_complex> d_taps_upper;
00110   bool                    d_updated;
00111 
00112   /*!
00113    * Build the FLL
00114    * \param samps_per_sym (float) number of samples per symbol
00115    * \param rolloff (float) Rolloff (excess bandwidth) of signal filter
00116    * \param filter_size (int) number of filter taps to generate
00117    * \param bandwidth (float) Loop bandwidth
00118    */
00119   digital_fll_band_edge_cc(float samps_per_sym, float rolloff,
00120                            int filter_size, float bandwidth);
00121   
00122   /*!
00123    * Design the band-edge filter based on the number of samples per symbol,
00124    * filter rolloff factor, and the filter size
00125    *
00126    * \param samps_per_sym    (float) Number of samples per symbol of signal
00127    * \param rolloff          (float) Rolloff factor of signal
00128    * \param filter_size      (int)   Size (in taps) of the filter
00129    */
00130   void design_filter(float samps_per_sym, float rolloff, int filter_size);
00131 
00132 public:
00133   ~digital_fll_band_edge_cc ();
00134 
00135   /*******************************************************************
00136     SET FUNCTIONS
00137   *******************************************************************/
00138   
00139   /*!
00140    * \brief Set the number of samples per symbol
00141    *
00142    * Set's the number of samples per symbol the system should
00143    * use. This value is uesd to calculate the filter taps and will
00144    * force a recalculation.
00145    *
00146    * \param sps    (float) new samples per symbol
00147    *
00148    */
00149   void set_samples_per_symbol(float sps);
00150 
00151   /*!
00152    * \brief Set the rolloff factor of the shaping filter
00153    *
00154    * This sets the rolloff factor that is used in the pulse shaping
00155    * filter and is used to calculate the filter taps. Changing this
00156    * will force a recalculation of the filter taps.
00157    *
00158    * This should be the same value that is used in the transmitter's
00159    * pulse shaping filter. It must be between 0 and 1 and is usually
00160    * between 0.2 and 0.5 (where 0.22 and 0.35 are commonly used
00161    * values).
00162    *
00163    * \param rolloff    (float) new shaping filter rolloff factor [0,1]
00164    *
00165    */
00166   void set_rolloff(float rolloff);
00167 
00168   /*!
00169    * \brief Set the number of taps in the filter
00170    *
00171    * This sets the number of taps in the band-edge filters. Setting
00172    * this will force a recalculation of the filter taps.
00173    *
00174    * This should be about the same number of taps used in the
00175    * transmitter's shaping filter and also not very large. A large
00176    * number of taps will result in a large delay between input and
00177    * frequency estimation, and so will not be as accurate. Between 30
00178    * and 70 taps is usual.
00179    *
00180    * \param filter_size    (float) number of taps in the filters
00181    *
00182    */
00183   void set_filter_size(int filter_size);
00184 
00185   /*******************************************************************
00186     GET FUNCTIONS
00187   *******************************************************************/
00188 
00189   /*!
00190    * \brief Returns the number of sampler per symbol used for the filter
00191    */
00192   float get_samples_per_symbol() const;
00193 
00194   /*!
00195    * \brief Returns the rolloff factor used for the filter
00196    */
00197   float get_rolloff() const;
00198 
00199   /*!
00200    * \brief Returns the number of taps of the filter
00201    */
00202   int get_filter_size() const;
00203 
00204   /*!
00205    * Print the taps to screen.
00206    */
00207   void print_taps();
00208    
00209   int work (int noutput_items,
00210             gr_vector_const_void_star &input_items,
00211             gr_vector_void_star &output_items);
00212 };
00213 
00214 #endif