GNU Radio 3.4.2 C++ API
gri_iir.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2002 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 #ifndef INCLUDED_GRI_IIR_H
00024 #define INCLUDED_GRI_IIR_H
00025 
00026 #include <vector>
00027 #include <stdexcept>
00028 
00029 /*!
00030  * \brief base class template for Infinite Impulse Response filter (IIR)
00031  */
00032 template<class i_type, class o_type, class tap_type> 
00033 class gri_iir {
00034 public:
00035   /*!
00036    * \brief Construct an IIR with the given taps.
00037    *
00038    * This filter uses the Direct Form I implementation, where
00039    * \p fftaps contains the feed-forward taps, and \p fbtaps the feedback ones.
00040    *
00041    * \p fftaps and \p fbtaps must have equal numbers of taps
00042    *
00043    * The input and output satisfy a difference equation of the form
00044 
00045    \f[
00046    y[n] - \sum_{k=1}^{M} a_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k]
00047    \f]
00048 
00049    * with the corresponding rational system function
00050 
00051    \f[
00052    H(z) = \frac{\sum_{k=0}^{N} b_k z^{-k}}{1 - \sum_{k=1}^{M} a_k z^{-k}}
00053    \f]
00054 
00055    * Note that some texts define the system function with a + in the denominator.
00056    * If you're using that convention, you'll need to negate the feedback taps.
00057    */
00058   gri_iir (const std::vector<tap_type>& fftaps,
00059           const std::vector<tap_type>& fbtaps) throw (std::invalid_argument)
00060   {
00061     set_taps (fftaps, fbtaps);
00062   }
00063 
00064   gri_iir () : d_latest_n(0),d_latest_m(0) { }
00065 
00066   ~gri_iir () {}
00067 
00068   /*!
00069    * \brief compute a single output value.
00070    * \returns the filtered input value.
00071    */
00072   o_type filter (const i_type input);
00073 
00074   /*!
00075    * \brief compute an array of N output values.
00076    * \p input must have N valid entries.
00077    */
00078   void filter_n (o_type output[], const i_type input[], long n);
00079 
00080   /*!
00081    * \return number of taps in filter.
00082    */
00083   unsigned ntaps_ff () const { return d_fftaps.size (); }
00084   unsigned ntaps_fb () const { return d_fbtaps.size (); }
00085 
00086   /*!
00087    * \brief install new taps.
00088    */
00089   void set_taps (const std::vector<tap_type> &fftaps, 
00090                  const std::vector<tap_type> &fbtaps) throw (std::invalid_argument)
00091   { 
00092 
00093 
00094     d_latest_n = 0;
00095     d_latest_m = 0;
00096     d_fftaps = fftaps; 
00097     d_fbtaps = fbtaps; 
00098 
00099     int n = fftaps.size ();
00100     int m = fbtaps.size ();
00101     d_prev_input.resize (2 * n);
00102     d_prev_output.resize (2 * m);
00103 
00104     for (int i = 0; i < 2 * n; i++){
00105       d_prev_input[i] = 0;
00106      }
00107     for (int i = 0; i < 2 * m; i++){
00108       d_prev_output[i] = 0;
00109     }
00110   }
00111 
00112 protected:
00113   std::vector<tap_type> d_fftaps;
00114   std::vector<tap_type> d_fbtaps;
00115   int                   d_latest_n;
00116   int                   d_latest_m;
00117   std::vector<tap_type> d_prev_output;
00118   std::vector<i_type>   d_prev_input;
00119 };
00120 
00121 
00122 //
00123 // general case.  We may want to specialize this
00124 //
00125 template<class i_type, class o_type, class tap_type> 
00126 o_type
00127 gri_iir<i_type, o_type, tap_type>::filter (const i_type input)
00128 {
00129   tap_type      acc;
00130   unsigned      i = 0;
00131   unsigned      n = ntaps_ff ();
00132   unsigned      m = ntaps_fb ();
00133 
00134   if (n == 0)
00135     return (o_type) 0;
00136 
00137   int latest_n = d_latest_n;
00138   int latest_m = d_latest_m;
00139   
00140   acc = d_fftaps[0] * input;
00141   for (i = 1; i < n; i ++)
00142     acc += (d_fftaps[i] * d_prev_input[latest_n + i]);
00143   for (i = 1; i < m; i ++)
00144     acc += (d_fbtaps[i] * d_prev_output[latest_m + i]);
00145 
00146   // store the values twice to avoid having to handle wrap-around in the loop
00147   d_prev_output[latest_m] = acc;
00148   d_prev_output[latest_m+m] = acc;
00149   d_prev_input[latest_n] = input;
00150   d_prev_input[latest_n+n] = input;
00151 
00152   latest_n--;
00153   latest_m--;
00154   if (latest_n < 0)
00155     latest_n += n;
00156   if (latest_m < 0)
00157     latest_m += m;
00158 
00159   d_latest_m = latest_m;
00160   d_latest_n = latest_n;
00161   return (o_type) acc;
00162 }
00163 
00164 
00165 template<class i_type, class o_type, class tap_type> 
00166 void 
00167 gri_iir<i_type, o_type, tap_type>::filter_n (o_type output[],
00168                                              const i_type input[],
00169                                              long n)
00170 {
00171   for (int i = 0; i < n; i++)
00172     output[i] = filter (input[i]);
00173 }
00174 
00175 #endif /* INCLUDED_GRI_IIR_H */
00176