GNU Radio 3.4.2 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2002,2006 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 #ifndef _GR_SINGLE_POLE_IIR_H_ 00023 #define _GR_SINGLE_POLE_IIR_H_ 00024 00025 #include <stdexcept> 00026 #include <gr_complex.h> 00027 /*! 00028 * \brief class template for single pole IIR filter 00029 */ 00030 template<class o_type, class i_type, class tap_type> 00031 class gr_single_pole_iir { 00032 public: 00033 /*! 00034 * \brief construct new single pole IIR with given alpha 00035 * 00036 * computes y(i) = (1-alpha) * y(i-1) + alpha * x(i) 00037 */ 00038 gr_single_pole_iir (tap_type alpha = 1.0) 00039 { 00040 d_prev_output = 0; 00041 set_taps (alpha); 00042 } 00043 00044 /*! 00045 * \brief compute a single output value. 00046 * \returns the filtered input value. 00047 */ 00048 o_type filter (const i_type input); 00049 00050 /*! 00051 * \brief compute an array of N output values. 00052 * \p input must have n valid entries. 00053 */ 00054 void filterN (o_type output[], const i_type input[], unsigned long n); 00055 00056 /*! 00057 * \brief install \p alpha as the current taps. 00058 */ 00059 void set_taps (tap_type alpha) 00060 { 00061 if (alpha < 0 || alpha > 1) 00062 throw std::out_of_range ("Alpha must be in [0, 1]\n"); 00063 00064 d_alpha = alpha; 00065 d_one_minus_alpha = 1.0 - alpha; 00066 } 00067 00068 //! reset state to zero 00069 void reset () 00070 { 00071 d_prev_output = 0; 00072 } 00073 00074 o_type prev_output () const { return d_prev_output; } 00075 00076 protected: 00077 tap_type d_alpha; 00078 tap_type d_one_minus_alpha; 00079 o_type d_prev_output; 00080 }; 00081 00082 00083 // 00084 // general case. We may want to specialize this 00085 // 00086 template<class o_type, class i_type, class tap_type> 00087 o_type 00088 gr_single_pole_iir<o_type, i_type, tap_type>::filter (const i_type input) 00089 { 00090 o_type output; 00091 00092 output = d_alpha * input + d_one_minus_alpha * d_prev_output; 00093 d_prev_output = output; 00094 00095 return (o_type) output; 00096 } 00097 00098 00099 template<class o_type, class i_type, class tap_type> 00100 void 00101 gr_single_pole_iir<o_type, i_type, tap_type>::filterN (o_type output[], 00102 const i_type input[], 00103 unsigned long n) 00104 { 00105 for (unsigned i = 0; i < n; i++) 00106 output[i] = filter (input[i]); 00107 } 00108 00109 00110 // 00111 // Specialized case for gr_complex output and double taps 00112 // We need to have a gr_complexd type for the calculations and prev_output variable (in stead of double) 00113 00114 template<class i_type> 00115 class gr_single_pole_iir<gr_complex, i_type, double> { 00116 public: 00117 /*! 00118 * \brief construct new single pole IIR with given alpha 00119 * 00120 * computes y(i) = (1-alpha) * y(i-1) + alpha * x(i) 00121 */ 00122 gr_single_pole_iir (double alpha = 1.0) 00123 { 00124 d_prev_output = 0; 00125 set_taps (alpha); 00126 } 00127 00128 /*! 00129 * \brief compute a single output value. 00130 * \returns the filtered input value. 00131 */ 00132 gr_complex filter (const i_type input); 00133 00134 /*! 00135 * \brief compute an array of N output values. 00136 * \p input must have n valid entries. 00137 */ 00138 void filterN (gr_complex output[], const i_type input[], unsigned long n); 00139 00140 /*! 00141 * \brief install \p alpha as the current taps. 00142 */ 00143 void set_taps (double alpha) 00144 { 00145 if (alpha < 0 || alpha > 1) 00146 throw std::out_of_range ("Alpha must be in [0, 1]\n"); 00147 00148 d_alpha = alpha; 00149 d_one_minus_alpha = 1.0 - alpha; 00150 } 00151 00152 //! reset state to zero 00153 void reset () 00154 { 00155 d_prev_output = 0; 00156 } 00157 00158 gr_complexd prev_output () const { return d_prev_output; } 00159 00160 protected: 00161 double d_alpha; 00162 double d_one_minus_alpha; 00163 gr_complexd d_prev_output; 00164 }; 00165 00166 template< class i_type> 00167 gr_complex 00168 gr_single_pole_iir<gr_complex, i_type, double>::filter (const i_type input) 00169 { 00170 gr_complexd output; 00171 00172 output = d_alpha * (gr_complexd)input + d_one_minus_alpha * d_prev_output; 00173 d_prev_output = output; 00174 00175 return (gr_complex) output; 00176 } 00177 00178 //Do we need to specialize this, although it is the same as the general case? 00179 00180 template<class i_type> 00181 void 00182 gr_single_pole_iir<gr_complex, i_type, double>::filterN (gr_complex output[], 00183 const i_type input[], 00184 unsigned long n) 00185 { 00186 for (unsigned i = 0; i < n; i++) 00187 output[i] = filter (input[i]); 00188 } 00189 00190 #endif /* _GR_SINGLE_POLE_IIR_H_ */