GNU Radio 3.3.0 C++ API
gc_job_desc.h
Go to the documentation of this file.
00001 /* -*- c -*- */
00002 /*
00003  * Copyright 2007,2008 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License along
00018  * with this program; if not, write to the Free Software Foundation, Inc.,
00019  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
00020  */
00021 
00022 #ifndef INCLUDED_GCELL_GC_JOB_DESC_H
00023 #define INCLUDED_GCELL_GC_JOB_DESC_H
00024 
00025 /*!
00026  * This file contains the structures that are used to describe how to
00027  * call "jobs" that execute on the SPEs.  A "job" is a task, or piece of
00028  * work that you want to run on an SPE.
00029  *
00030  * There is code running in the SPE that knows how to interpret
00031  * these job descriptions. Thus, in most cases, the overhead
00032  * of invoking these is very low.
00033  *
00034  * The whole "job idea" is SPE centric.  At first pass,
00035  * the PPE will be constructing jobs and enqueing them.
00036  * However, there is nothing in the implementation that
00037  * prohibits SPEs from creating their own jobs in the
00038  * future.  Also, there is nothing prohibiting SPE-to-SPE
00039  * DMA's.
00040  *
00041  * SPE's dequeue and "pull" jobs to themselves, do the work, then
00042  * notify the entity that submitted the job.
00043  */
00044 
00045 #include <gcell/gc_types.h>
00046 #include <gcell/gc_job_desc_private.h>
00047 
00048 /*
00049  * This is C, not C++ code...
00050  *
00051  * ...and is used by both PPE and SPE code
00052  */
00053 __GC_BEGIN_DECLS
00054 
00055 
00056 //! opaque ID that specifies which code to invoke on the SPE
00057 typedef uint32_t gc_proc_id_t;
00058 #define GCP_UNKNOWN_PROC ((gc_proc_id_t) -1)
00059 
00060 
00061 //! final job status
00062 typedef enum {
00063   JS_OK,
00064   JS_SHUTTING_DOWN,         // job mananger is shutting down
00065   JS_TOO_MANY_CLIENTS,      // too many client threads
00066   JS_UNKNOWN_PROC,          // didn't recognize the procedure ID
00067   JS_BAD_DIRECTION,         // EA arg has invalid direction
00068   JS_BAD_EAH,               // not all EA args have the same high 32 address bits
00069   JS_BAD_N_DIRECT,          // too many direct args
00070   JS_BAD_N_EA,              // too many EA args
00071   JS_ARGS_TOO_LONG,         // total length of EA args exceeds limit
00072   JS_BAD_JUJU,              // misc problem: you're having a bad day
00073   JS_BAD_JOB_DESC,          // gc_job_desc was not allocated using mgr->alloc_job_desc()
00074 
00075 } gc_job_status_t;
00076 
00077 #define MAX_ARGS_DIRECT  8  // maximum number of args passed using "direct" method
00078 #define MAX_ARGS_EA      8  // maximum number of args passed via EA memory (dma)
00079 
00080 /*
00081  * We support two classes of arguments,
00082  *   "direct", which are contained in the gc_job_desc_args and
00083  *   "EA", which are copied in/out according to info in gc_job_desc_args
00084  */
00085 
00086 /*!
00087  * \brief Tag type of "direct" argument
00088  */
00089 typedef enum {
00090   GCT_S32,
00091   GCT_U32,
00092   GCT_S64,
00093   GCT_U64,
00094   GCT_FLOAT,
00095   GCT_DOUBLE,
00096   GCT_FLT_CMPLX,
00097   GCT_DBL_CMPLX,
00098   GCT_EADDR,
00099 
00100 } gc_tag_t;
00101 
00102 
00103 /*!
00104  * \brief union for passing "direct" argument
00105  */
00106 typedef union gc_arg_union
00107 {
00108   int32_t        s32;
00109   uint32_t       u32;
00110   int64_t        s64;
00111   uint64_t       u64;
00112   float          f;
00113   double         d;
00114   //float complex  cf;  //  64-bits (C99)
00115   //double complex cd;  // 128-bits (C99)
00116   gc_eaddr_t     ea;    //  64-bits
00117 } _AL8 gc_arg_union_t;
00118 
00119 
00120 /*!
00121  * \brief "direct" input or output arguments
00122  */
00123 typedef struct gc_job_direct_args
00124 {
00125   uint32_t        nargs;                        // # of "direct" args
00126   gc_tag_t        tag[MAX_ARGS_DIRECT] _AL16;   // type of direct arg[i]
00127   gc_arg_union_t  arg[MAX_ARGS_DIRECT] _AL16;   // direct argument values
00128 
00129 } _AL16 gc_job_direct_args_t;
00130 
00131 
00132 // specifies direction for args passed in EA memory
00133 
00134 #define GCJD_DMA_GET            0x01            // in to SPE
00135 #define GCJD_DMA_PUT            0x02            // out from SPE
00136 
00137 /*!
00138  * \brief Description of args passed in EA memory.
00139  * These are DMA'd between EA and LS as specified.
00140  */
00141 typedef struct gc_job_ea_arg {
00142   //! EA address of buffer
00143   gc_eaddr_t     ea_addr;       
00144 
00145   //! GC_JD_DMA_* get arg or put arg
00146   uint32_t       direction;
00147 
00148   //! number of bytes to get
00149   uint32_t       get_size;         
00150 
00151   //! number of bytes to put
00152   uint32_t       put_size;
00153 
00154 #if defined(__SPU__)
00155   //! local store address (filled in by SPU runtime)
00156   void          *ls_addr;
00157   uint32_t       _pad[2];
00158 #else
00159   uint32_t       _pad[3];
00160 #endif
00161 
00162 } _AL16 gc_job_ea_arg_t;
00163 
00164 
00165 typedef struct gc_job_ea_args {
00166   uint32_t              nargs;
00167   gc_job_ea_arg_t       arg[MAX_ARGS_EA];
00168 
00169 } _AL16 gc_job_ea_args_t;
00170 
00171 
00172 /*!
00173  * \brief "job description" that is DMA'd to/from the SPE.
00174  * \ingroup gcell
00175  */
00176 typedef struct gc_job_desc
00177 {
00178   gc_job_desc_private_t sys;      // internals
00179   gc_job_status_t       status;   // what happened (output)
00180   gc_proc_id_t          proc_id;  // specifies which procedure to run
00181   gc_job_direct_args_t  input;    // direct args to SPE
00182   gc_job_direct_args_t  output;   // direct args from SPE
00183   gc_job_ea_args_t      eaa;      // args passed via EA memory
00184 
00185 } _AL128 gc_job_desc_t;
00186 
00187 
00188 /*!
00189  * type of procedure invoked on spu
00190  */
00191 typedef void (*gc_spu_proc_t)(const gc_job_direct_args_t *input,
00192                               gc_job_direct_args_t *output,
00193                               const gc_job_ea_args_t *eaa);
00194 
00195 #if !defined(__SPU__)
00196 
00197 static inline gc_job_desc_t *
00198 ea_to_jdp(gc_eaddr_t ea)
00199 {
00200   return (gc_job_desc_t *) ea_to_ptr(ea);
00201 }
00202 
00203 static inline gc_eaddr_t
00204 jdp_to_ea(gc_job_desc_t *item)
00205 {
00206   return ptr_to_ea(item);
00207 }
00208 
00209 #endif
00210 
00211 
00212 __GC_END_DECLS
00213 
00214 #endif /* INCLUDED_GCELL_GC_JOB_DESC_H */