GNU Radio 3.3.0 C++ API
|
00001 /* -*- c++ -*- */ 00002 /* 00003 * Copyright 2007 Free Software Foundation, Inc. 00004 * 00005 * This file is part of GNU Radio 00006 * 00007 * GNU Radio is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 3, or (at your option) 00010 * any later version. 00011 * 00012 * GNU Radio is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with GNU Radio; see the file COPYING. If not, write to 00019 * the Free Software Foundation, Inc., 51 Franklin Street, 00020 * Boston, MA 02110-1301, USA. 00021 */ 00022 #ifndef INCLUDED_CVSD_DECODE_BS_H 00023 #define INCLUDED_CVSD_DECODE_BS_H 00024 00025 #include <gr_sync_interpolator.h> 00026 00027 class cvsd_decode_bs; 00028 00029 typedef boost::shared_ptr<cvsd_decode_bs> cvsd_decode_bs_sptr; 00030 00031 /*! 00032 * \brief Constructor parameters to initialize the CVSD decoder. The default 00033 * values are modeled after the Bluetooth standard and should not be changed, 00034 * except by an advanced user 00035 * 00036 * \param min_step Minimum step size used to update the internal reference. Default: "10" 00037 * \param max_step Maximum step size used to update the internal reference. Default: "1280" 00038 * \param step_decay Decay factor applied to step size when there is not a run of J output 1s or 0s. Default: "0.9990234375" (i.e. 1-1/1024) 00039 * \param accum_decay Decay factor applied to the internal reference during every interation of the codec. Default: "0.96875" (i.e. 1-1/32) 00040 * \param K; Size of shift register; the number of output bits remembered by codec (must be less or equal to 32). Default: "32" 00041 * \param J; Number of bits in the shift register that are equal; i.e. the size of a run of 1s, 0s. Default: "4" 00042 * \param pos_accum_max Maximum integer value allowed for the internal reference. Default: "32767" (2^15 - 1 or MAXSHORT) 00043 * \param neg_accum_max Minimum integer value allowed for the internal reference. Default: "-32767" (-2^15 + 1 or MINSHORT+1) 00044 * 00045 */ 00046 cvsd_decode_bs_sptr cvsd_make_decode_bs (short min_step=10, 00047 short max_step=1280, 00048 double step_decay=0.9990234375, 00049 double accum_decay= 0.96875, 00050 int K=32, 00051 int J=4, 00052 short pos_accum_max=32767, 00053 short neg_accum_max=-32767); 00054 00055 /*! 00056 * \brief This block performs CVSD audio decoding. Its design and implementation 00057 * is modeled after the CVSD encoder/decoder specifications defined in the 00058 * Bluetooth standard. 00059 * 00060 * \ingroup vocoder_blk 00061 * 00062 * CVSD is a method for encoding speech that seeks to reduce the 00063 * bandwidth required for digital voice transmission. CVSD takes 00064 * advantage of strong correlation between samples, quantizing the 00065 * difference in amplitude between two consecutive samples. This 00066 * difference requires fewer quantization levels as compared to other 00067 * methods that quantize the actual amplitude level, reducing the 00068 * bandwidth. CVSD employs a two level quantizer (one bit) and an 00069 * adaptive algorithm that allows for continuous step size adjustment. 00070 * 00071 * The coder can represent low amplitude signals with accuracy without 00072 * sacrificing performance on large amplitude signals, a trade off that 00073 * occurs in some non-adaptive modulations. 00074 * 00075 * The CVSD decoder effectively provides 1-to-8 decompression. More 00076 * specifically, for each incoming input bit, the decoder outputs one 00077 * audio sample. If the input is a "1" bit, the internal reference is 00078 * increased appropriately and then outputted as the next estimated audio 00079 * sample. If the input is a "0" bit, the internal reference is 00080 * decreased appropriately and then likewise outputted as the next estimated 00081 * audio sample. Grouping 8 input bits together, the encoder essentially 00082 * produces 8 output audio samples for everyone one input byte. 00083 * 00084 * This decoder requires that output audio samples are 2-byte short signed 00085 * integers. The result bandwidth conversion, therefore, is 1 byte of 00086 * encoded audio data to 16 output bytes of raw audio data. 00087 * 00088 * The CVSD decoder module must be post-fixed by a down-converter to 00089 * under-sample the audio data after decoding. The Bluetooth standard 00090 * specifically calls for a 8-to-1 decimating down-converter. This is 00091 * required so that so that output sampling rate equals the original input 00092 * sampling rate present before the encoder. In all cases, the output 00093 * down-converter rate must be the inverse of the input up-converter rate 00094 * before the CVSD encoder. 00095 * 00096 * References: 00097 * 1. Continuously Variable Slope Delta Modulation (CVSD) A Tutorial, 00098 * Available: http://www.eetkorea.com/ARTICLES/2003AUG/A/2003AUG29_NTEK_RFD_AN02.PDF. 00099 * 2. Specification of The Bluetooth System 00100 * Available: http://grouper.ieee.org/groups/802/15/Bluetooth/core_10_b.pdf. 00101 * 3. McGarrity, S., Bluetooth Full Duplex Voice and Data Transmission. 2002. 00102 * Bluetooth Voice Simulink® Model, Available: 00103 * http://www.mathworks.com/company/newsletters/digest/nov01/bluetooth.html 00104 * 00105 */ 00106 00107 class cvsd_decode_bs : public gr_sync_interpolator 00108 { 00109 private: 00110 friend cvsd_decode_bs_sptr cvsd_make_decode_bs (short min_step, 00111 short max_step, 00112 double step_decay, 00113 double accum_decay, 00114 int K, 00115 int J, 00116 short pos_accum_max, 00117 short neg_accum_max); 00118 00119 cvsd_decode_bs (short min_step, short max_step, double step_decay, 00120 double accum_decay, int K, int J, 00121 short pos_accum_max, short neg_accum_max); 00122 00123 //! Member functions required by the encoder/decoder 00124 //! \brief Rounding function specific to CVSD 00125 //! \return the input value rounded to the nearest integer 00126 int cvsd_round(double input); 00127 00128 //! \brief A power function specific to CVSD data formats 00129 //! \return (radix)^power, where radix and power are short integers 00130 unsigned int cvsd_pow (short radix, short power); 00131 00132 //! \brief Sums number of 1's in the input 00133 //! \return the number of 1s in the four bytes of an input unsigned integer 00134 unsigned char cvsd_bitwise_sum (unsigned int input); 00135 00136 short d_min_step; 00137 short d_max_step; 00138 double d_step_decay; 00139 double d_accum_decay; 00140 00141 int d_K; //!< \brief Size of shift register; the number of output bits remembered in shift register 00142 int d_J; //!< \brief Number of bits in the shift register that are equal; size of run of 1s, 0s 00143 00144 short d_pos_accum_max; 00145 short d_neg_accum_max; 00146 00147 int d_accum; //!< \brief Current value of internal reference 00148 int d_loop_counter; //!< \brief Current value of the loop counter 00149 unsigned int d_runner; //!< \brief Current value of the shift register 00150 unsigned int d_runner_mask; //!< \brief Value of the mask to access the last J bits of the shift register 00151 short d_stepsize; //!< \brief Current value of the step sizer 00152 00153 public: 00154 ~cvsd_decode_bs (); // public destructor 00155 00156 short min_step() { return d_min_step; } 00157 short max_step() { return d_max_step; } 00158 double step_decay() { return d_step_decay; } 00159 double accum_decay() { return d_accum_decay; } 00160 int K() { return d_K; } 00161 int J() { return d_J; } 00162 short pos_accum_max() { return d_pos_accum_max; } 00163 short neg_accum_max() { return d_neg_accum_max; } 00164 00165 int work (int noutput_items, 00166 gr_vector_const_void_star &input_items, 00167 gr_vector_void_star &output_items); 00168 }; 00169 00170 #endif /* INCLUDED_CVSD_DECODE_BS_H */