/*---------------------------------------------------------------------------*\

  FILE........: c2sim.c
  AUTHOR......: David Rowe
  DATE CREATED: 20/8/2010

  Codec2 simulation.  Combines encoder and decoder and allows
  switching in and out various algorithms and quantisation steps. Used
  for algorithm development.

\*---------------------------------------------------------------------------*/

/*
  Copyright (C) 2009 David Rowe

  All rights reserved.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License version 2.1, as
  published by the Free Software Foundation.  This program is
  distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with this program; if not, see <http://www.gnu.org/licenses/>.
*/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <unistd.h>
#include <getopt.h>

#include "defines.h"
#include "sine.h"
#include "nlp.h"
#include "dump.h"
#include "lpc.h"
#include "lsp.h"
#include "quantise.h"
#include "phase.h"
#include "postfilter.h"
#include "interp.h"
#include "ampexp.h"
#include "phaseexp.h"

void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain);
void print_help(const struct option *long_options, int num_opts, char* argv[]);


/*---------------------------------------------------------------------------*\

				MAIN

\*---------------------------------------------------------------------------*/

int main(int argc, char *argv[])
{
    FILE *fout = NULL;	/* output speech file                    */
    FILE *fin;		/* input speech file                     */
    short buf[N];	/* input/output buffer                   */
    float Sn[M];	/* float input speech samples            */
    float Sn_pre[M];	/* pre-emphasised input speech samples   */
    COMP  Sw[FFT_ENC];	/* DFT of Sn[]                           */
    kiss_fft_cfg  fft_fwd_cfg;
    kiss_fft_cfg  fft_inv_cfg;
    float w[M];	        /* time domain hamming window            */
    COMP  W[FFT_ENC];	/* DFT of w[]                            */
    MODEL model;
    float Pn[2*N];	/* trapezoidal synthesis window          */
    float Sn_[2*N];	/* synthesised speech */
    int   i;		/* loop variable                         */
    int   frames;
    float prev_Wo, prev__Wo, uq_Wo, prev_uq_Wo;
    float pitch;
    int   voiced1 = 0;
    char  out_file[MAX_STR];
    char  ampexp_arg[MAX_STR];
    char  phaseexp_arg[MAX_STR];
    float snr;
    float sum_snr;

    int lpc_model = 0, order = LPC_ORD;
    int lsp = 0, lspd = 0, lspvq = 0;
    int lspres = 0;
    int lspdt = 0, lspdt_mode = LSPDT_ALL;
    int dt = 0, lspjvm = 0, lspanssi = 0, lspjnd = 0, lspmel = 0;
    int prede = 0;
    float pre_mem = 0.0, de_mem = 0.0;
    float ak[LPC_MAX];
    COMP  Sw_[FFT_ENC];
    COMP  Ew[FFT_ENC];

    int phase0 = 0;
    float ex_phase[MAX_AMP+1];

    int   postfilt;
    float bg_est;

    int   hand_voicing = 0, phaseexp = 0, ampexp = 0, hi = 0, simlpcpf = 0;
    int   lpcpf = 0;
    FILE *fvoicing = 0;

    MODEL prev_model, interp_model;
    int decimate = 0;
    float lsps[LPC_MAX];
    float prev_lsps[LPC_MAX], prev_lsps_[LPC_MAX];
    float lsps__prev[LPC_MAX];
    float lsps__prev2[LPC_MAX];
    float e, prev_e;
    float ak_interp[LPC_MAX];
    int   lsp_indexes[LPC_MAX];
    float lsps_[LPC_MAX];
    float Woe_[2];

    void *nlp_states;
    float hpf_states[2];
    int   scalar_quant_Wo_e = 0;
    int   vector_quant_Wo_e = 0;
    int   dump_pitch_e = 0;
    FILE *fjvm = NULL;
    #ifdef DUMP
    int   dump;
    #endif
    struct PEXP *pexp = NULL;
    struct AEXP *aexp = NULL;
    float gain = 1.0;

    char* opt_string = "ho:";
    struct option long_options[] = {
        { "lpc", required_argument, &lpc_model, 1 },
        { "lspjnd", no_argument, &lspjnd, 1 },
        { "lspmel", no_argument, &lspmel, 1 },
        { "lsp", no_argument, &lsp, 1 },
        { "lspd", no_argument, &lspd, 1 },
        { "lspvq", no_argument, &lspvq, 1 },
        { "lspres", no_argument, &lspres, 1 },
        #ifdef __EXPERIMENTAL__
        { "lspdt", no_argument, &lspdt, 1 },
        { "lspdt_mode", required_argument, NULL, 0 },
        #endif
        { "lspjvm", no_argument, &lspjvm, 1 },
        #ifdef __EXPERIMENTAL__
        { "lspanssi", no_argument, &lspanssi, 1 },
        #endif
        { "phase0", no_argument, &phase0, 1 },
        { "phaseexp", required_argument, &phaseexp, 1 },
        { "ampexp", required_argument, &ampexp, 1 },
        { "postfilter", no_argument, &postfilt, 1 },
        { "hand_voicing", required_argument, &hand_voicing, 1 },
        { "dec", no_argument, &decimate, 1 },
        { "dt", no_argument, &dt, 1 },
        { "hi", no_argument, &hi, 1 },
        { "simlpcpf", no_argument, &simlpcpf, 1 },
        { "lpcpf", no_argument, &lpcpf, 1 },
        { "prede", no_argument, &prede, 1 },
        { "dump_pitch_e", required_argument, &dump_pitch_e, 1 },
        { "sq_pitch_e", no_argument, &scalar_quant_Wo_e, 1 },
        { "vq_pitch_e", no_argument, &vector_quant_Wo_e, 1 },
        { "rate", required_argument, NULL, 0 },
        { "gain", required_argument, NULL, 0 },
        #ifdef DUMP
        { "dump", required_argument, &dump, 1 },
        #endif
        { "help", no_argument, NULL, 'h' },
        { NULL, no_argument, NULL, 0 }
    };
    int num_opts=sizeof(long_options)/sizeof(struct option);

    for(i=0; i<M; i++) {
	Sn[i] = 1.0;
	Sn_pre[i] = 1.0;
    }
    for(i=0; i<2*N; i++)
	Sn_[i] = 0;

    prev_uq_Wo = prev_Wo = prev__Wo = TWO_PI/P_MAX;

    prev_model.Wo = TWO_PI/P_MIN;
    prev_model.L = floor(PI/prev_model.Wo);
    for(i=1; i<=prev_model.L; i++) {
	prev_model.A[i] = 0.0;
	prev_model.phi[i] = 0.0;
    }
    for(i=1; i<=MAX_AMP; i++) {
	//ex_phase[i] = (PI/3)*(float)rand()/RAND_MAX;
	ex_phase[i] = 0.0;
    }
    for(i=0; i<LPC_ORD; i++) {
	lsps_[i] = prev_lsps[i] = prev_lsps_[i] = i*PI/(LPC_ORD+1);
	lsps__prev[i] = lsps__prev2[i] = i*PI/(LPC_ORD+1);
    }
    e = prev_e = 1;
    hpf_states[0] = hpf_states[1] = 0.0;

    nlp_states = nlp_create(M);

    if (argc < 2) {
        print_help(long_options, num_opts, argv);
    }

    /*----------------------------------------------------------------*\

                     Interpret Command Line Arguments

    \*----------------------------------------------------------------*/

    while(1) {
        int option_index = 0;
        int opt = getopt_long(argc, argv, opt_string,
                    long_options, &option_index);
        if (opt == -1)
            break;
        switch (opt) {
         case 0:
            if(strcmp(long_options[option_index].name, "lpc") == 0) {
                order = atoi(optarg);
                if((order < 4) || (order > 20)) {
                    fprintf(stderr, "Error in LPC order: %s\n", optarg);
                    exit(1);
                }
            #ifdef DUMP
            } else if(strcmp(long_options[option_index].name, "dump") == 0) {
                if (dump)
	            dump_on(optarg);
            #endif
            } else if(strcmp(long_options[option_index].name, "lsp") == 0
                  || strcmp(long_options[option_index].name, "lspd") == 0
                  || strcmp(long_options[option_index].name, "lspvq") == 0) {
	        assert(order == LPC_ORD);
            } else if(strcmp(long_options[option_index].name, "lspdt_mode") == 0) {
	        if (strcmp(optarg,"all") == 0)
	            lspdt_mode = LSPDT_ALL;
	        else if (strcmp(optarg,"low") == 0)
	            lspdt_mode = LSPDT_LOW;
	        else if (strcmp(optarg,"high") == 0)
	            lspdt_mode = LSPDT_HIGH;
	        else {
	            fprintf(stderr, "Error in lspdt_mode: %s\n", optarg);
	            exit(1);
	        }
            } else if(strcmp(long_options[option_index].name, "hand_voicing") == 0) {
	        if ((fvoicing = fopen(optarg,"rt")) == NULL) {
	            fprintf(stderr, "Error opening voicing file: %s: %s.\n",
		        optarg, strerror(errno));
                    exit(1);
                }
	    } else if(strcmp(long_options[option_index].name, "dump_pitch_e") == 0) {
	        if ((fjvm = fopen(optarg,"wt")) == NULL) {
	            fprintf(stderr, "Error opening pitch & energy dump file: %s: %s.\n",
		        optarg, strerror(errno));
                    exit(1);
                }
	    } else if(strcmp(long_options[option_index].name, "phaseexp") == 0) {
		strcpy(phaseexp_arg, optarg);
	    } else if(strcmp(long_options[option_index].name, "ampexp") == 0) {
		strcpy(ampexp_arg, optarg);
	    } else if(strcmp(long_options[option_index].name, "gain") == 0) {
		gain = atof(optarg);
	    } else if(strcmp(long_options[option_index].name, "rate") == 0) {
                if(strcmp(optarg,"3200") == 0) {
	            lpc_model = 1; order = 10;
		    scalar_quant_Wo_e = 1;
	            lspd = 1;
	            phase0 = 1;
	            postfilt = 1;
	            decimate = 1;
		    lpcpf = 1;
               } else if(strcmp(optarg,"2400") == 0) {
	            lpc_model = 1; order = 10;
		    vector_quant_Wo_e = 1;
	            lsp = 1;
	            phase0 = 1;
	            postfilt = 1;
	            decimate = 1;
		    lpcpf = 1;
               } else if(strcmp(optarg,"1400") == 0) {
	            lpc_model = 1; order = 10;
		    vector_quant_Wo_e = 1;
	            lsp = 1; lspdt = 1;
	            phase0 = 1;
	            postfilt = 1;
	            decimate = 1;
	            dt = 1;
 		    lpcpf = 1;
                } else if(strcmp(optarg,"1200") == 0) {
	            lpc_model = 1; order = 10;
		    scalar_quant_Wo_e = 1;
	            lspjvm = 1; lspdt = 1;
	            phase0 = 1;
	            postfilt = 1;
	            decimate = 1;
	            dt = 1;
 		    lpcpf = 1;
                } else {
                    fprintf(stderr, "Error: invalid output rate %s\n", optarg);
                    exit(1);
                }
            }
            break;

         case 'h':
            print_help(long_options, num_opts, argv);
            break;

         case 'o':
	     if (strcmp(optarg, "-") == 0) fout = stdout;
	     else if ((fout = fopen(optarg,"wb")) == NULL) {
	        fprintf(stderr, "Error opening output speech file: %s: %s.\n",
		    optarg, strerror(errno));
	        exit(1);
	     }
	     strcpy(out_file,optarg);
	     break;

         default:
            /* This will never be reached */
            break;
        }
    }

    /* Input file */

     if ((fin = fopen(argv[optind],"rb")) == NULL) {
	fprintf(stderr, "Error opening input speech file: %s: %s.\n",
		argv[optind], strerror(errno));
	exit(1);
    }

    ex_phase[0] = 0;
    bg_est = 0.0;
    Woe_[0] = Woe_[1] = 1.0;

    /*
      printf("lspd: %d lspdt: %d lspdt_mode: %d  phase0: %d postfilt: %d "
	   "decimate: %d dt: %d\n",lspd,lspdt,lspdt_mode,phase0,postfilt,
	   decimate,dt);
    */

    /* Initialise ------------------------------------------------------------*/

    fft_fwd_cfg = kiss_fft_alloc(FFT_ENC, 0, NULL, NULL); /* fwd FFT,used in several places   */
    fft_inv_cfg = kiss_fft_alloc(FFT_DEC, 1, NULL, NULL); /* inverse FFT, used just for synth */
    make_analysis_window(fft_fwd_cfg, w, W);
    make_synthesis_window(Pn);
    quantise_init();
    if (phaseexp)
	pexp = phase_experiment_create();
    if (ampexp)
	aexp = amp_experiment_create();

    /*----------------------------------------------------------------*\

                            Main Loop

    \*----------------------------------------------------------------*/

    frames = 0;
    sum_snr = 0;
    while(fread(buf,sizeof(short),N,fin)) {
	frames++;
	//printf("frame: %d ", frames);

	/* Read input speech */

	for(i=0; i<M-N; i++) {
	    Sn[i] = Sn[i+N];
	    Sn_pre[i] = Sn_pre[i+N];
	}
	for(i=0; i<N; i++)
	    Sn[i+M-N] = buf[i];

	pre_emp(&Sn_pre[M-N], &Sn[M-N], &pre_mem, N);


	/*------------------------------------------------------------*\

                      Estimate Sinusoidal Model Parameters

	\*------------------------------------------------------------*/

	nlp(nlp_states,Sn,N,P_MIN,P_MAX,&pitch,Sw,W,&prev_uq_Wo);
	model.Wo = TWO_PI/pitch;

	dft_speech(fft_fwd_cfg, Sw, Sn, w);
	two_stage_pitch_refinement(&model, Sw);
	estimate_amplitudes(&model, Sw, W, 1);
	uq_Wo = model.Wo;

        #ifdef DUMP
	dump_Sn(Sn); dump_Sw(Sw); dump_model(&model);
        #endif

	if (ampexp)
	    amp_experiment(aexp, &model, ampexp_arg);

	if (phaseexp) {
            #ifdef DUMP
	    dump_phase(&model.phi[0], model.L);
            #endif
	    phase_experiment(pexp, &model, phaseexp_arg);
            #ifdef DUMP
	    dump_phase_(&model.phi[0], model.L);
            #endif
	}

	if (hi) {
	    int m;
	    for(m=1; m<model.L/2; m++)
		model.A[m] = 0.0;
	    for(m=3*model.L/4; m<=model.L; m++)
		model.A[m] = 0.0;
	}

	/*------------------------------------------------------------*\

                            Zero-phase modelling

	\*------------------------------------------------------------*/

	if (phase0) {
	    float Wn[M];		        /* windowed speech samples */
	    float Rk[LPC_MAX+1];	        /* autocorrelation coeffs  */

            #ifdef DUMP
	    dump_phase(&model.phi[0], model.L);
            #endif

	    /* find aks here, these are overwritten if LPC modelling is enabled */

	    if (prede) {
		for(i=0; i<M; i++)
		    Wn[i] = Sn_pre[i]*w[i];
	    }
	    else {

		for(i=0; i<M; i++)
		    Wn[i] = Sn[i]*w[i];
	    }
	    autocorrelate(Wn,Rk,M,order);
	    levinson_durbin(Rk,ak,order);

	    /* determine voicing */

	    snr = est_voicing_mbe(&model, Sw, W, Sw_, Ew, prev_uq_Wo);

	    if (dump_pitch_e)
		fprintf(fjvm, "%f %f %d ", model.Wo, snr, model.voiced);

	    //printf("snr %3.2f v: %d Wo: %f prev_Wo: %f\n", snr, model.voiced,
	    //	   model.Wo, prev_uq_Wo);
            #ifdef DUMP
	    dump_Sw_(Sw_);
	    dump_Ew(Ew);
	    dump_snr(snr);
            #endif

	    /* just to make sure we are not cheating - kill all phases */

	    for(i=0; i<=MAX_AMP; i++)
	    	model.phi[i] = 0;

	    if (hand_voicing) {
		fscanf(fvoicing,"%d\n",&model.voiced);
	    }
	}

	/*------------------------------------------------------------*\

	        LPC model amplitudes and LSP quantisation

	\*------------------------------------------------------------*/

	if (lpc_model) {

	    if (prede)
		e = speech_to_uq_lsps(lsps, ak, Sn_pre, w, order);
	    else
		e = speech_to_uq_lsps(lsps, ak, Sn, w, order);

            #ifdef DUMP
	    dump_ak(ak, LPC_ORD);
            #endif

	    /* tracking down -ve energy values with BW expansion */
	    /*
	    if (e < 0.0) {
		int i;
		FILE*f=fopen("x.txt","wt");
		for(i=0; i<M; i++)
		    fprintf(f,"%f\n", Sn[i]);
		fclose(f);
		printf("e = %f frames = %d\n", e, frames);
		for(i=0; i<order; i++)
		    printf("%f ", ak[i]);
		exit(0);
	    }
	    */

	    if (dump_pitch_e)
		fprintf(fjvm, "%f\n", e);

            #ifdef DUMP
	    /* dump order is different if we are decimating */
	    if (!decimate)
		dump_lsp(lsps);
	    for(i=0; i<LPC_ORD; i++)
		prev_lsps[i] = lsps[i];
            #endif

	    /* various LSP quantisation schemes */

	    if (lsp) {
		encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD);
		decode_lsps_scalar(lsps_, lsp_indexes, LPC_ORD);
		bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0);
		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }

	    if (lspd) {
		encode_lspds_scalar(lsp_indexes, lsps, LPC_ORD);
		decode_lspds_scalar(lsps_, lsp_indexes, LPC_ORD);
		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }

#ifdef __EXPERIMENTAL__
	    if (lspvq) {
		lspvq_quantise(lsps, lsps_, LPC_ORD);
		bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0);
		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }
#endif

	    if (lspjvm) {
		/* Jean-Marc's multi-stage, split VQ */
		lspjvm_quantise(lsps, lsps_, LPC_ORD);
		{
		    float lsps_bw[LPC_ORD];
		    memcpy(lsps_bw, lsps_, sizeof(float)*LPC_ORD);
		    bw_expand_lsps(lsps_bw, LPC_ORD, 50.0, 100.0);
		    lsp_to_lpc(lsps_bw, ak, LPC_ORD);
		}
	    }

#ifdef __EXPERIMENTAL__
	    if (lspanssi) {
		/*  multi-stage VQ from Anssi Ramo OH3GDD */

		lspanssi_quantise(lsps, lsps_, LPC_ORD, 5);
		bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0);
		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }
#endif

	    /* experimenting with non-linear LSP spacing to see if
	       it's just noticeable */

	    if (lspjnd) {
		for(i=0; i<LPC_ORD; i++)
		    lsps_[i] = lsps[i];
		locate_lsps_jnd_steps(lsps_, LPC_ORD);
		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }

	    /* Another experiment with non-linear LSP spacing, this
	       time using a scaled version of mel frequency axis
	       warping.  The scaling is such that the integer output
	       can be directly sent over the channel.
	    */

	    if (lspmel) {
		float f, f_;
		int mel[LPC_ORD];

		for(i=0; i<LPC_ORD; i++) {
		    f = (4000.0/PI)*lsps[i];
		    mel[i] = floor(100.0*log10(1.0 + f/700.0) + 0.5);
		}

		for(i=1; i<LPC_ORD; i++) {
		    if (mel[i] == mel[i-1])
			mel[i]++;
		}

                #ifdef DUMP
                dump_mel(mel);
                #endif

		for(i=0; i<LPC_ORD; i++) {
		    f_ = 700.0*( pow(10.0, (float)mel[i]/100.0) - 1.0);
		    lsps_[i] = f_*(PI/4000.0);
		}
                /*
                for(i=5; i<10; i++) {
		    lsps_[i] = lsps[i];
		}
                */

		lsp_to_lpc(lsps_, ak, LPC_ORD);
	    }

	    /* we need lsp__prev[] for lspdt and decimate.  If no
	       other LSP quantisation is used we use original LSPs as
	       there is no quantised version available. TODO: this is
	       mess, we should have structures and standard
	       nomenclature for previous frames values, lsp_[]
	       shouldn't be overwritten as we may want to dump it for
	       analysis.  Re-design some time.
	    */

	    if (!lsp && !lspd && !lspvq && !lspres && !lspjvm && !lspanssi && !lspjnd && !lspmel)
		for(i=0; i<LPC_ORD; i++)
		    lsps_[i] = lsps[i];

	    /* Odd frames are generated by quantising the difference
	       between the previous frames LSPs and this frames */

#ifdef __EXPERIMENTAL__
	    if (lspdt && !decimate) {
		if (frames%2) {
		    lspdt_quantise(lsps, lsps_, lsps__prev, lspdt_mode);
		    bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0);
		    lsp_to_lpc(lsps_, ak, LPC_ORD);
		}
		for(i=0; i<LPC_ORD; i++)
		    lsps__prev[i] = lsps_[i];
	    }
#endif

	    /*
	       When decimation is enabled we only send LSPs to the
	       decoder on odd frames.  In the Delta-time LSPs case we
	       encode every second odd frame (i.e. every 3rd frame out
	       of 4) by quantising the difference between the 1st
	       frames LSPs and the 3rd frames:

	       10ms, frame 1: discard (interpolate at decoder)
	       20ms, frame 2: send "full" LSP frame
	       30ms, frame 3: discard (interpolate at decoder)
	       40ms, frame 4: send LSPs differences between frame 4 and frame 2
	    */

	    if (lspdt && decimate) {
		/* print previous LSPs to make sure we are using the right set */
		if ((frames%4) == 0) {
		    //printf("  lspdt ");
                    //#define LSPDT
                    #ifdef LSPDT
		    lspdt_quantise(lsps, lsps_, lsps__prev2, lspdt_mode);
                    #else
		    for(i=0; i<LPC_ORD; i++)
			lsps_[i] = lsps__prev2[i];
                    #endif
		    bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0);
		    lsp_to_lpc(lsps_, ak, LPC_ORD);
		}

		for(i=0; i<LPC_ORD; i++) {
		    lsps__prev2[i] = lsps__prev[i];
		    lsps__prev[i] = lsps_[i];
		}
	    }
            #ifdef DUMP
	    /* if using decimated (20ms) frames we dump interp
	       LSPs below */
	    if (!decimate)
		dump_lsp_(lsps_);
            #endif

	    if (scalar_quant_Wo_e) {

		e = decode_energy(encode_energy(e));

		if (!decimate) {
		    /* we send params every 10ms, delta-time every 20ms */
		    if (dt && (frames % 2))
			model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev_Wo),prev_Wo);
		    else
			model.Wo = decode_Wo(encode_Wo(model.Wo));
		}

		if (decimate) {
		    /* we send params every 20ms */
		    if (dt && ((frames % 4) == 0)) {
			/* delta-time every 40ms */
			model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev__Wo),prev__Wo);
		    }
		    else
			model.Wo = decode_Wo(encode_Wo(model.Wo));
		}

		model.L  = PI/model.Wo; /* if we quantise Wo re-compute L */
	    }

	    if (vector_quant_Wo_e) {

		/* JVM's experimental joint Wo & LPC energy quantiser */

		//printf("\nWo %f e %f\n", model.Wo, e);
		quantise_WoE(&model, &e, Woe_);
		//printf("Wo %f e %f\n", model.Wo, e);

	    }

	    aks_to_M2(fft_fwd_cfg, ak, order, &model, e, &snr, 1, simlpcpf, lpcpf, 1, LPCPF_BETA, LPCPF_GAMMA);
	    apply_lpc_correction(&model);

            #ifdef DUMP
	    dump_ak_(ak, LPC_ORD);
            #endif

	    /* note SNR on interpolated frames can't be measured properly
	       by comparing Am as L has changed.  We can dump interp lsps
	       and compare them,
	    */
            #ifdef DUMP
	    dump_lpc_snr(snr);
            #endif
	    sum_snr += snr;
            #ifdef DUMP
	    dump_quantised_model(&model);
            #endif
	}

	/*------------------------------------------------------------*\

                         Decimation to 20ms frame rate

	\*------------------------------------------------------------*/

	if (decimate) {
	    float lsps_interp[LPC_ORD];

	    if (!phase0) {
		printf("needs --phase0 to resample phase for interpolated Wo\n");
		exit(0);
	    }
	    if (!lpc_model) {
		printf("needs --lpc 10 to resample amplitudes\n");
		exit(0);
	    }

	    /*
	       Each 20ms we synthesise two 10ms frames:

	       frame 1: discard except for voicing bit
	       frame 2: interpolate frame 1 LSPs from frame 2 and frame 0
	                synthesise frame 1 and frame 2 speech
	       frame 3: discard except for voicing bit
	       frame 4: interpolate frame 3 LSPs from frame 4 and frame 2
	                synthesise frame 3 and frame 4 speech
	    */

	    if ((frames%2) == 0) {
		//printf("frame: %d\n", frames);

		/* decode interpolated frame */

		interp_model.voiced = voiced1;

		interpolate_lsp(fft_fwd_cfg, &interp_model, &prev_model, &model,
				prev_lsps_, prev_e, lsps_, e, ak_interp, lsps_interp);
		apply_lpc_correction(&interp_model);

		/* used to compare with c2enc/c2dec version

		printf("  Wo: %1.5f  L: %d v1: %d prev_e: %f\n",
		       interp_model.Wo, interp_model.L, interp_model.voiced, prev_e);
		printf("  lsps_interp: ");
		for(i=0; i<LPC_ORD; i++)
		    printf("%5.3f  ", lsps_interp[i]);
		printf("\n  A..........: ");
		for(i=0; i<10; i++)
		    printf("%5.3f  ",interp_model.A[i]);

		printf("\n  Wo: %1.5f  L: %d e: %3.2f v2: %d\n",
		       model.Wo, model.L, e, model.voiced);
		printf("  lsps_......: ");
		for(i=0; i<LPC_ORD; i++)
		    printf("%5.3f  ", lsps_[i]);
		printf("\n  A..........: ");
		for(i=0; i<10; i++)
		    printf("%5.3f  ",model.A[i]);
		printf("\n");
		*/

                #ifdef DUMP
		/* do dumping here so we get lsp dump file in correct order */
		dump_lsp(prev_lsps);
		dump_lsp(lsps_interp);
		dump_lsp(lsps);
		dump_lsp(lsps_);
                #endif

		if (phase0)
		    phase_synth_zero_order(fft_fwd_cfg, &interp_model, ak_interp, ex_phase,
					   order);
		if (postfilt)
		    postfilter(&interp_model, &bg_est);
		synth_one_frame(fft_inv_cfg, buf, &interp_model, Sn_, Pn, prede, &de_mem, gain);
		//printf("  buf[0] %d\n", buf[0]);
		if (fout != NULL)
		    fwrite(buf,sizeof(short),N,fout);

		/* decode this frame */

		if (phase0)
		    phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order);
		if (postfilt)
		    postfilter(&model, &bg_est);
		synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain);
		//printf("  buf[0] %d\n", buf[0]);
		if (fout != NULL)
		    fwrite(buf,sizeof(short),N,fout);

		/* update states for next time */

		prev_model = model;
		for(i=0; i<LPC_ORD; i++)
		    prev_lsps_[i] = lsps_[i];
		prev_e = e;
	    }
	    else {
		voiced1 = model.voiced;
	    }
	}
	else {
	    /* no decimation - sythesise each 10ms frame immediately */

	    if (phase0)
	    	phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order);

	    if (postfilt)
		postfilter(&model, &bg_est);
	    synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain);
	    if (fout != NULL) fwrite(buf,sizeof(short),N,fout);
	}

	prev__Wo = prev_Wo;
	prev_Wo = model.Wo;
	prev_uq_Wo = uq_Wo;
	//if (frames == 8) {
	//    exit(0);
	//}
    }

    /*----------------------------------------------------------------*\

                            End Main Loop

    \*----------------------------------------------------------------*/

    fclose(fin);

    if (fout != NULL)
	fclose(fout);

    if (lpc_model)
    	printf("SNR av = %5.2f dB\n", sum_snr/frames);

    if (phaseexp)
	phase_experiment_destroy(pexp);
    if (ampexp)
	amp_experiment_destroy(aexp);
    #ifdef DUMP
    if (dump)
	dump_off();
    #endif

    if (hand_voicing)
	fclose(fvoicing);

    nlp_destroy(nlp_states);

    return 0;
}

void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain)
{
    int     i;

    synthesise(fft_inv_cfg, Sn_, model, Pn, 1);
    if (prede)
        de_emp(Sn_, Sn_, de_mem, N);

    for(i=0; i<N; i++) {
	Sn_[i] *= gain;
	if (Sn_[i] > 32767.0)
	    buf[i] = 32767;
	else if (Sn_[i] < -32767.0)
	    buf[i] = -32767;
	else
	    buf[i] = Sn_[i];
    }

}

void print_help(const struct option* long_options, int num_opts, char* argv[])
{
	int i;
	char *option_parameters;

	fprintf(stderr, "\nCodec2 - low bit rate speech codec - Simulation Program\n"
		"\thttp://rowetel.com/codec2.html\n\n"
		"usage: %s [OPTIONS] <InputFile>\n\n"
                "Options:\n"
                "\t-o <OutputFile>\n", argv[0]);
        for(i=0; i<num_opts-1; i++) {
		if(long_options[i].has_arg == no_argument) {
			option_parameters="";
		} else if (strcmp("lpc", long_options[i].name) == 0) {
			option_parameters = " <Order>";
		} else if (strcmp("lspdt_mode", long_options[i].name) == 0) {
			option_parameters = " <all|high|low>";
		} else if (strcmp("hand_voicing", long_options[i].name) == 0) {
			option_parameters = " <VoicingFile>";
		} else if (strcmp("dump_pitch_e", long_options[i].name) == 0) {
			option_parameters = " <Dump File>";
		} else if (strcmp("rate", long_options[i].name) == 0) {
			option_parameters = " <4800|2400|1400|1200>";
		} else if (strcmp("dump", long_options[i].name) == 0) {
			option_parameters = " <DumpFilePrefix>";
		} else {
			option_parameters = " <UNDOCUMENTED parameter>";
		}
		fprintf(stderr, "\t--%s%s\n", long_options[i].name, option_parameters);
	}
	exit(1);
}