/* -*- c++ -*- */ /* * Copyright 2010-2015 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include <climits> #include <stdexcept> #include "usrp_sink_impl.h" #include "gr_uhd_common.h" #include <gnuradio/io_signature.h> namespace gr { namespace uhd { usrp_sink::sptr usrp_sink::make(const ::uhd::device_addr_t &device_addr, const ::uhd::io_type_t &io_type, size_t num_channels) { //fill in the streamer args ::uhd::stream_args_t stream_args; switch(io_type.tid) { case ::uhd::io_type_t::COMPLEX_FLOAT32: stream_args.cpu_format = "fc32"; break; case ::uhd::io_type_t::COMPLEX_INT16: stream_args.cpu_format = "sc16"; break; default: throw std::runtime_error("only complex float and shorts known to work"); } stream_args.otw_format = "sc16"; //only sc16 known to work for(size_t chan = 0; chan < num_channels; chan++) stream_args.channels.push_back(chan); //linear mapping return usrp_sink::make(device_addr, stream_args, ""); } usrp_sink::sptr usrp_sink::make(const ::uhd::device_addr_t &device_addr, const ::uhd::stream_args_t &stream_args, const std::string &length_tag_name) { check_abi(); return usrp_sink::sptr (new usrp_sink_impl(device_addr, stream_args_ensure(stream_args), length_tag_name)); } usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t &device_addr, const ::uhd::stream_args_t &stream_args, const std::string &length_tag_name) : usrp_block("gr uhd usrp sink", args_to_io_sig(stream_args), io_signature::make(0, 0, 0)), usrp_block_impl(device_addr, stream_args, length_tag_name), _length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL : pmt::string_to_symbol(length_tag_name)), _nitems_to_send(0) { _sample_rate = get_samp_rate(); } usrp_sink_impl::~usrp_sink_impl() { } ::uhd::dict<std::string, std::string> usrp_sink_impl::get_usrp_info(size_t chan) { chan = _stream_args.channels[chan]; #ifdef UHD_USRP_MULTI_USRP_GET_USRP_INFO_API return _dev->get_usrp_tx_info(chan); #else throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_subdev_spec(const std::string &spec, size_t mboard) { return _dev->set_tx_subdev_spec(spec, mboard); } std::string usrp_sink_impl::get_subdev_spec(size_t mboard) { return _dev->get_tx_subdev_spec(mboard).to_string(); } void usrp_sink_impl::set_samp_rate(double rate) { BOOST_FOREACH(const size_t chan, _stream_args.channels) { _dev->set_tx_rate(rate, chan); } _sample_rate = this->get_samp_rate(); } double usrp_sink_impl::get_samp_rate(void) { return _dev->get_tx_rate(_stream_args.channels[0]); } ::uhd::meta_range_t usrp_sink_impl::get_samp_rates(void) { #ifdef UHD_USRP_MULTI_USRP_GET_RATES_API return _dev->get_tx_rates(_stream_args.channels[0]); #else throw std::runtime_error("not implemented in this version"); #endif } ::uhd::tune_result_t usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request, size_t chan) { _curr_tune_req[chan] = tune_request; chan = _stream_args.channels[chan]; return _dev->set_tx_freq(tune_request, chan); } ::uhd::tune_result_t usrp_sink_impl::_set_center_freq_from_internals(size_t chan, pmt::pmt_t direction) { _chans_to_tune.reset(chan); if (pmt::eqv(direction, pmt::mp("RX"))) { // TODO: what happens if the RX device is not instantiated? Catch error? return _dev->set_rx_freq(_curr_tune_req[chan], _stream_args.channels[chan]); } else { return _dev->set_tx_freq(_curr_tune_req[chan], _stream_args.channels[chan]); } } double usrp_sink_impl::get_center_freq(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_freq(chan); } ::uhd::freq_range_t usrp_sink_impl::get_freq_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_freq_range(chan); } void usrp_sink_impl::set_gain(double gain, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_gain(gain, chan); } void usrp_sink_impl::set_gain(double gain, const std::string &name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_gain(gain, name, chan); } void usrp_sink_impl::set_normalized_gain(double norm_gain, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN _dev->set_normalized_tx_gain(norm_gain, chan); #else if (norm_gain > 1.0 || norm_gain < 0.0) { throw std::runtime_error("Normalized gain out of range, must be in [0, 1]."); } ::uhd::gain_range_t gain_range = get_gain_range(chan); double abs_gain = (norm_gain * (gain_range.stop() - gain_range.start())) + gain_range.start(); set_gain(abs_gain, chan); #endif } double usrp_sink_impl::get_gain(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain(chan); } double usrp_sink_impl::get_gain(const std::string &name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain(name, chan); } double usrp_sink_impl::get_normalized_gain(size_t chan) { #ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN return _dev->get_normalized_tx_gain(chan); #else ::uhd::gain_range_t gain_range = get_gain_range(chan); double norm_gain = (get_gain(chan) - gain_range.start()) / (gain_range.stop() - gain_range.start()); // Avoid rounding errors: if (norm_gain > 1.0) return 1.0; if (norm_gain < 0.0) return 0.0; return norm_gain; #endif } std::vector<std::string> usrp_sink_impl::get_gain_names(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_names(chan); } ::uhd::gain_range_t usrp_sink_impl::get_gain_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_range(chan); } ::uhd::gain_range_t usrp_sink_impl::get_gain_range(const std::string &name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_range(name, chan); } void usrp_sink_impl::set_antenna(const std::string &ant, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_antenna(ant, chan); } std::string usrp_sink_impl::get_antenna(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_antenna(chan); } std::vector<std::string> usrp_sink_impl::get_antennas(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_antennas(chan); } void usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_bandwidth(bandwidth, chan); } double usrp_sink_impl::get_bandwidth(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_bandwidth(chan); } ::uhd::freq_range_t usrp_sink_impl::get_bandwidth_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_bandwidth_range(chan); } void usrp_sink_impl::set_dc_offset(const std::complex<double> &offset, size_t chan) { chan = _stream_args.channels[chan]; #ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API return _dev->set_tx_dc_offset(offset, chan); #else throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_iq_balance(const std::complex<double> &correction, size_t chan) { chan = _stream_args.channels[chan]; #ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API return _dev->set_tx_iq_balance(correction, chan); #else throw std::runtime_error("not implemented in this version"); #endif } ::uhd::sensor_value_t usrp_sink_impl::get_sensor(const std::string &name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_sensor(name, chan); } std::vector<std::string> usrp_sink_impl::get_sensor_names(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_sensor_names(chan); } ::uhd::usrp::dboard_iface::sptr usrp_sink_impl::get_dboard_iface(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_dboard_iface(chan); } void usrp_sink_impl::set_stream_args(const ::uhd::stream_args_t &stream_args) { _update_stream_args(stream_args); #ifdef GR_UHD_USE_STREAM_API if(_tx_stream) _tx_stream.reset(); #else throw std::runtime_error("not implemented in this version"); #endif } /*********************************************************************** * Work **********************************************************************/ int usrp_sink_impl::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int ninput_items = noutput_items; //cuz it's a sync block // default to send a mid-burst packet _metadata.start_of_burst = false; _metadata.end_of_burst = false; //collect tags in this work() const uint64_t samp0_count = nitems_read(0); get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items); if(not _tags.empty()) this->tag_work(ninput_items); if(not pmt::is_null(_length_tag_key)) { //check if there is data left to send from a burst tagged with length_tag //If a burst is started during this call to work(), tag_work() should have //been called and we should have _nitems_to_send > 0. if (_nitems_to_send > 0) { ninput_items = std::min<long>(_nitems_to_send, ninput_items); //if we run out of items to send, it's the end of the burst if(_nitems_to_send - long(ninput_items) == 0) _metadata.end_of_burst = true; } else { //There is a tag gap since no length_tag was found immediately following //the last sample of the previous burst. Drop samples until the next //length_tag is found. Notify the user of the tag gap. std::cerr << "tG" << std::flush; //increment the timespec by the number of samples dropped _metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate); return ninput_items; } } boost::this_thread::disable_interruption disable_interrupt; #ifdef GR_UHD_USE_STREAM_API //send all ninput_items with metadata const size_t num_sent = _tx_stream->send (input_items, ninput_items, _metadata, 1.0); #else const size_t num_sent = _dev->get_device()->send (input_items, ninput_items, _metadata, *_type, ::uhd::device::SEND_MODE_FULL_BUFF, 1.0); #endif boost::this_thread::restore_interruption restore_interrupt(disable_interrupt); //if using length_tags, decrement items left to send by the number of samples sent if(not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) { _nitems_to_send -= long(num_sent); } //increment the timespec by the number of samples sent _metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate); // Some post-processing tasks if we actually transmitted the entire burst if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) { GR_LOG_DEBUG(d_debug_logger, boost::format("Executing %d pending commands.") % _pending_cmds.size()); BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, _pending_cmds) { msg_handler_command(cmd_pmt); } _pending_cmds.clear(); } return num_sent; } /*********************************************************************** * Tag Work **********************************************************************/ void usrp_sink_impl::tag_work(int &ninput_items) { //the for loop below assumes tags sorted by count low -> high std::sort(_tags.begin(), _tags.end(), tag_t::offset_compare); //extract absolute sample counts const uint64_t samp0_count = this->nitems_read(0); uint64_t max_count = samp0_count + ninput_items; // Go through tag list until something indicates the end of a burst. bool found_time_tag = false; bool found_eob = false; // For commands that are in the middle of the burst: std::vector<pmt::pmt_t> commands_in_burst; // Store the command uint64_t in_burst_cmd_offset = 0; // Store its position BOOST_FOREACH(const tag_t &my_tag, _tags) { const uint64_t my_tag_count = my_tag.offset; const pmt::pmt_t &key = my_tag.key; const pmt::pmt_t &value = my_tag.value; if (my_tag_count >= max_count) { break; } /* I. Tags that can only be on the first sample of a burst * * This includes: * - tx_time * - tx_command TODO should also work end-of-burst * - tx_sob * - length tags * * With these tags, we check if they're on the first item, otherwise, * we stop before that tag so they are on the first item the next time round. */ else if (pmt::equal(key, COMMAND_KEY)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } // TODO set the command time from the sample time msg_handler_command(value); } //set the time specification in the metadata else if(pmt::equal(key, TIME_KEY)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } found_time_tag = true; _metadata.has_time_spec = true; _metadata.time_spec = ::uhd::time_spec_t (pmt::to_uint64(pmt::tuple_ref(value, 0)), pmt::to_double(pmt::tuple_ref(value, 1))); } //set the start of burst flag in the metadata; ignore if length_tag_key is not null else if(pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) { if (my_tag.offset != samp0_count) { max_count = my_tag_count; break; } // Bursty tx will not use time specs, unless a tx_time tag is also given. _metadata.has_time_spec = false; _metadata.start_of_burst = pmt::to_bool(value); } //length_tag found; set the start of burst flag in the metadata else if(not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } //If there are still items left to send, the current burst has been preempted. //Set the items remaining counter to the new burst length. Notify the user of //the tag preemption. else if(_nitems_to_send > 0) { std::cerr << "tP" << std::flush; } _nitems_to_send = pmt::to_long(value); _metadata.start_of_burst = true; } /* II. Tags that can be on the first OR last sample of a burst * * This includes: * - tx_freq * * With these tags, we check if they're at the start of a burst, and do * the appropriate action. Otherwise, make sure the corresponding sample * is the last one. */ else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) { // If it's on the first sample, immediately do the tune: GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq on start of burst.")); pmt::pmt_t freq_cmd = pmt::make_dict(); freq_cmd = pmt::dict_add(freq_cmd, pmt::mp("freq"), value); msg_handler_command(freq_cmd); } else if(pmt::equal(key, FREQ_KEY)) { // If it's not on the first sample, queue this command and only tx until here: GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq mid-burst.")); pmt::pmt_t freq_cmd = pmt::make_dict(); freq_cmd = pmt::dict_add(freq_cmd, pmt::mp("freq"), value); commands_in_burst.push_back(freq_cmd); max_count = my_tag_count + 1; in_burst_cmd_offset = my_tag_count; } /* III. Tags that can only be on the last sample of a burst * * This includes: * - tx_eob * * Make sure that no more samples are allowed through. */ else if(pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) { found_eob = true; max_count = my_tag_count + 1; _metadata.end_of_burst = pmt::to_bool(value); } } // end foreach if(not pmt::is_null(_length_tag_key) && long(max_count - samp0_count) == _nitems_to_send) { found_eob = true; } // If a command was found in-burst that may appear at the end of burst, // there's two options: // 1) The command was actually on the last sample (eob). Then, stash the // commands for running after work(). // 2) The command was not on the last sample. In this case, only send() // until before the tag, so it will be on the first sample of the next run. if (not commands_in_burst.empty()) { if (not found_eob) { // ...then it's in the middle of a burst, only send() until before the tag max_count = in_burst_cmd_offset; } else if (in_burst_cmd_offset < max_count) { BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, commands_in_burst) { _pending_cmds.push_back(cmd_pmt); } } } if (found_time_tag) { _metadata.has_time_spec = true; } // Only transmit up to and including end of burst, // or everything if no burst boundaries are found. ninput_items = int(max_count - samp0_count); } // end tag_work() void usrp_sink_impl::set_start_time(const ::uhd::time_spec_t &time) { _start_time = time; _start_time_set = true; _stream_now = false; } //Send an empty start-of-burst packet to begin streaming. //Set at a time in the near future to avoid late packets. bool usrp_sink_impl::start(void) { #ifdef GR_UHD_USE_STREAM_API if (not _tx_stream) _tx_stream = _dev->get_tx_stream(_stream_args); #endif _metadata.start_of_burst = true; _metadata.end_of_burst = false; // Bursty tx will need to send a tx_time to activate time spec _metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key); _nitems_to_send = 0; if(_start_time_set) { _start_time_set = false; //cleared for next run _metadata.time_spec = _start_time; } else { _metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.15); } #ifdef GR_UHD_USE_STREAM_API _tx_stream->send (gr_vector_const_void_star(_nchan), 0, _metadata, 1.0); #else _dev->get_device()->send (gr_vector_const_void_star(_nchan), 0, _metadata, *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0); #endif return true; } //Send an empty end-of-burst packet to end streaming. //Ending the burst avoids an underflow error on stop. bool usrp_sink_impl::stop(void) { _metadata.start_of_burst = false; _metadata.end_of_burst = true; _metadata.has_time_spec = false; _nitems_to_send = 0; #ifdef GR_UHD_USE_STREAM_API if(_tx_stream) _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0); #else _dev->get_device()->send (gr_vector_const_void_star(_nchan), 0, _metadata, *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0); #endif return true; } void usrp_sink_impl::setup_rpc() { #ifdef GR_CTRLPORT add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_handler<usrp_block>( alias(), "command", "", "UHD Commands", RPC_PRIVLVL_MIN, DISPNULL))); #endif /* GR_CTRLPORT */ } } /* namespace uhd */ } /* namespace gr */