/* -*- c++ -*- */
/*
 * Copyright 2010-2016,2018 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */

#include "gr_uhd_common.h"
#include "usrp_sink_impl.h"
#include <gnuradio/io_signature.h>
#include <climits>
#include <stdexcept>

namespace gr {
namespace uhd {

usrp_sink::sptr usrp_sink::make(const ::uhd::device_addr_t& device_addr,
                                const ::uhd::stream_args_t& stream_args,
                                const std::string& length_tag_name)
{
    check_abi();
    return usrp_sink::sptr(new usrp_sink_impl(
        device_addr, stream_args_ensure(stream_args), length_tag_name));
}

usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t& device_addr,
                               const ::uhd::stream_args_t& stream_args,
                               const std::string& length_tag_name)
    : usrp_block("usrp_sink", args_to_io_sig(stream_args), io_signature::make(0, 0, 0)),
      usrp_block_impl(device_addr, stream_args, length_tag_name),
      _length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL
                                              : pmt::string_to_symbol(length_tag_name)),
      _nitems_to_send(0),
      _async_event_loop_running(true)
{
    message_port_register_out(ASYNC_MSGS_PORT_KEY);
    _async_event_thread = gr::thread::thread([this]() { this->async_event_loop(); });
    _sample_rate = get_samp_rate();
}

usrp_sink_impl::~usrp_sink_impl()
{
    _async_event_loop_running = false;
    _async_event_thread.join();
}

::uhd::dict<std::string, std::string> usrp_sink_impl::get_usrp_info(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_usrp_tx_info(chan);
}

void usrp_sink_impl::set_subdev_spec(const std::string& spec, size_t mboard)
{
    return _dev->set_tx_subdev_spec(spec, mboard);
}

std::string usrp_sink_impl::get_subdev_spec(size_t mboard)
{
    return _dev->get_tx_subdev_spec(mboard).to_string();
}

void usrp_sink_impl::set_samp_rate(double rate)
{
    for (const auto& chan : _stream_args.channels) {
        _dev->set_tx_rate(rate, chan);
    }
    _sample_rate = this->get_samp_rate();
}

double usrp_sink_impl::get_samp_rate(void)
{
    return _dev->get_tx_rate(_stream_args.channels[0]);
}

::uhd::meta_range_t usrp_sink_impl::get_samp_rates(void)
{
    return _dev->get_tx_rates(_stream_args.channels[0]);
}

::uhd::tune_result_t
usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request, size_t chan)
{
    _curr_tune_req[chan] = tune_request;
    chan = _stream_args.channels[chan];
    return _dev->set_tx_freq(tune_request, chan);
}

::uhd::tune_result_t usrp_sink_impl::_set_center_freq_from_internals(size_t chan,
                                                                     pmt::pmt_t direction)
{
    _chans_to_tune.reset(chan);
    if (pmt::eqv(direction, ant_direction_rx())) {
        // TODO: what happens if the RX device is not instantiated? Catch error?
        return _dev->set_rx_freq(_curr_tune_req[chan], _stream_args.channels[chan]);
    } else {
        return _dev->set_tx_freq(_curr_tune_req[chan], _stream_args.channels[chan]);
    }
}

double usrp_sink_impl::get_center_freq(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_freq(chan);
}

::uhd::freq_range_t usrp_sink_impl::get_freq_range(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_freq_range(chan);
}

void usrp_sink_impl::set_gain(double gain, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_gain(gain, chan);
}

void usrp_sink_impl::set_gain(double gain, const std::string& name, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_gain(gain, name, chan);
}

void usrp_sink_impl::set_normalized_gain(double norm_gain, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN
    _dev->set_normalized_tx_gain(norm_gain, chan);
#else
    if (norm_gain > 1.0 || norm_gain < 0.0) {
        throw std::runtime_error("Normalized gain out of range, must be in [0, 1].");
    }
    ::uhd::gain_range_t gain_range = get_gain_range(chan);
    double abs_gain =
        (norm_gain * (gain_range.stop() - gain_range.start())) + gain_range.start();
    set_gain(abs_gain, chan);
#endif
}

double usrp_sink_impl::get_gain(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_gain(chan);
}

double usrp_sink_impl::get_gain(const std::string& name, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_gain(name, chan);
}

double usrp_sink_impl::get_normalized_gain(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN
    return _dev->get_normalized_tx_gain(chan);
#else
    ::uhd::gain_range_t gain_range = get_gain_range(chan);
    double norm_gain =
        (get_gain(chan) - gain_range.start()) / (gain_range.stop() - gain_range.start());
    // Avoid rounding errors:
    if (norm_gain > 1.0)
        return 1.0;
    if (norm_gain < 0.0)
        return 0.0;
    return norm_gain;
#endif
}

std::vector<std::string> usrp_sink_impl::get_gain_names(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_gain_names(chan);
}

::uhd::gain_range_t usrp_sink_impl::get_gain_range(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_gain_range(chan);
}

::uhd::gain_range_t usrp_sink_impl::get_gain_range(const std::string& name, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_gain_range(name, chan);
}

bool usrp_sink_impl::has_power_reference(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
    if (chan >= _stream_args.channels.size()) {
        throw std::out_of_range("Invalid channel: " + std::to_string(chan));
    }
    const size_t dev_chan = _stream_args.channels[chan];
    return _dev->has_tx_power_reference(dev_chan);
#else
    GR_LOG_WARN(d_logger,
                "UHD version 4.0 or greater required for power reference API. ");
    return false;
#endif
}

void usrp_sink_impl::set_power_reference(double power_dbm, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
    if (chan >= _stream_args.channels.size()) {
        throw std::out_of_range("Invalid channel: " + std::to_string(chan));
    }
    const size_t dev_chan = _stream_args.channels[chan];
    _dev->set_tx_power_reference(power_dbm, dev_chan);
#else
    GR_LOG_ERROR(d_logger,
                 "UHD version 4.0 or greater required for power reference API.");
    throw std::runtime_error("not implemented in this version");
#endif
}

double usrp_sink_impl::get_power_reference(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
    if (chan >= _stream_args.channels.size()) {
        throw std::out_of_range("Invalid channel: " + std::to_string(chan));
    }
    const size_t dev_chan = _stream_args.channels[chan];
    return _dev->get_tx_power_reference(dev_chan);
#else
    GR_LOG_ERROR(d_logger,
                 "UHD version 4.0 or greater required for power reference API.");
    throw std::runtime_error("not implemented in this version");
#endif
}

::uhd::meta_range_t usrp_sink_impl::get_power_range(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
    if (chan >= _stream_args.channels.size()) {
        throw std::out_of_range("Invalid channel: " + std::to_string(chan));
    }
    const size_t dev_chan = _stream_args.channels[chan];
    return _dev->get_tx_power_range(dev_chan);
#else
    GR_LOG_ERROR(d_logger,
                 "UHD version 4.0 or greater required for power reference API.");
    throw std::runtime_error("not implemented in this version");
#endif
}

void usrp_sink_impl::set_antenna(const std::string& ant, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_antenna(ant, chan);
}

std::string usrp_sink_impl::get_antenna(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_antenna(chan);
}

std::vector<std::string> usrp_sink_impl::get_antennas(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_antennas(chan);
}

void usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_bandwidth(bandwidth, chan);
}

double usrp_sink_impl::get_bandwidth(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_bandwidth(chan);
}

::uhd::freq_range_t usrp_sink_impl::get_bandwidth_range(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_bandwidth_range(chan);
}
std::vector<std::string> usrp_sink_impl::get_lo_names(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_names(chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

const std::string usrp_sink_impl::get_lo_source(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_source(name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

std::vector<std::string> usrp_sink_impl::get_lo_sources(const std::string& name,
                                                        size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_sources(name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

void usrp_sink_impl::set_lo_source(const std::string& src,
                                   const std::string& name,
                                   size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->set_tx_lo_source(src, name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

bool usrp_sink_impl::get_lo_export_enabled(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_export_enabled(name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

void usrp_sink_impl::set_lo_export_enabled(bool enabled,
                                           const std::string& name,
                                           size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->set_tx_lo_export_enabled(enabled, name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

::uhd::freq_range_t usrp_sink_impl::get_lo_freq_range(const std::string& name,
                                                      size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_freq_range(name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

double usrp_sink_impl::get_lo_freq(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->get_tx_lo_freq(name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

double usrp_sink_impl::set_lo_freq(double freq, const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
    chan = _stream_args.channels[chan];
    return _dev->set_tx_lo_freq(freq, name, chan);
#else
    throw std::runtime_error("not implemented in this version");
#endif
}

void usrp_sink_impl::set_dc_offset(const std::complex<double>& offset, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_dc_offset(offset, chan);
}

void usrp_sink_impl::set_iq_balance(const std::complex<double>& correction, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->set_tx_iq_balance(correction, chan);
}

::uhd::sensor_value_t usrp_sink_impl::get_sensor(const std::string& name, size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_sensor(name, chan);
}

std::vector<std::string> usrp_sink_impl::get_sensor_names(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_sensor_names(chan);
}

::uhd::usrp::dboard_iface::sptr usrp_sink_impl::get_dboard_iface(size_t chan)
{
    chan = _stream_args.channels[chan];
    return _dev->get_tx_dboard_iface(chan);
}

void usrp_sink_impl::set_stream_args(const ::uhd::stream_args_t& stream_args)
{
    _update_stream_args(stream_args);
    if (_tx_stream) {
        _tx_stream.reset();
    }
}

/***********************************************************************
 * Work
 **********************************************************************/
int usrp_sink_impl::work(int noutput_items,
                         gr_vector_const_void_star& input_items,
                         gr_vector_void_star& output_items)
{
    int ninput_items = noutput_items; // cuz it's a sync block

    // default to send a mid-burst packet
    _metadata.start_of_burst = false;
    _metadata.end_of_burst = false;

    // collect tags in this work()
    const uint64_t samp0_count = nitems_read(0);
    get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items);
    if (not _tags.empty())
        this->tag_work(ninput_items);

    if (not pmt::is_null(_length_tag_key)) {
        // check if there is data left to send from a burst tagged with length_tag
        // If a burst is started during this call to work(), tag_work() should have
        // been called and we should have _nitems_to_send > 0.
        if (_nitems_to_send > 0) {
            ninput_items = std::min<long>(_nitems_to_send, ninput_items);
            // if we run out of items to send, it's the end of the burst
            if (_nitems_to_send - long(ninput_items) == 0)
                _metadata.end_of_burst = true;
        } else {
            // There is a tag gap since no length_tag was found immediately following
            // the last sample of the previous burst. Drop samples until the next
            // length_tag is found. Notify the user of the tag gap.
            GR_LOG_ERROR(d_logger, "tG");
            // increment the timespec by the number of samples dropped
            _metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate);
            return ninput_items;
        }
    }

    // send all ninput_items with metadata
    boost::this_thread::disable_interruption disable_interrupt;
    const size_t num_sent = _tx_stream->send(input_items, ninput_items, _metadata, 1.0);
    boost::this_thread::restore_interruption restore_interrupt(disable_interrupt);

    // if using length_tags, decrement items left to send by the number of samples sent
    if (not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) {
        _nitems_to_send -= long(num_sent);
    }

    // increment the timespec by the number of samples sent
    _metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate);

    // Some post-processing tasks if we actually transmitted the entire burst
    if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) {
        GR_LOG_DEBUG(d_debug_logger,
                     boost::format("Executing %d pending commands.") %
                         _pending_cmds.size());
        for (const auto& cmd_pmt : _pending_cmds) {
            msg_handler_command(cmd_pmt);
        }
        _pending_cmds.clear();
    }

    return num_sent;
}

/***********************************************************************
 * Tag Work
 **********************************************************************/
void usrp_sink_impl::tag_work(int& ninput_items)
{
    // the for loop below assumes tags sorted by count low -> high
    std::sort(_tags.begin(), _tags.end(), tag_t::offset_compare);

    // extract absolute sample counts
    const uint64_t samp0_count = this->nitems_read(0);
    uint64_t max_count = samp0_count + ninput_items;

    // Go through tag list until something indicates the end of a burst.
    bool found_time_tag = false;
    bool found_eob = false;
    // For commands that are in the middle of the burst:
    std::vector<pmt::pmt_t> commands_in_burst; // Store the command
    uint64_t in_burst_cmd_offset = 0;          // Store its position
    for (const auto& my_tag : _tags) {
        const uint64_t my_tag_count = my_tag.offset;
        const pmt::pmt_t& key = my_tag.key;
        const pmt::pmt_t& value = my_tag.value;

        if (my_tag_count >= max_count) {
            break;
        }

        /* I. Tags that can only be on the first sample of a burst
         *
         * This includes:
         * - tx_time
         * - tx_command TODO should also work end-of-burst
         * - tx_sob
         * - length tags
         *
         * With these tags, we check if they're on the first item, otherwise,
         * we stop before that tag so they are on the first item the next time round.
         */
        else if (pmt::equal(key, COMMAND_KEY)) {
            if (my_tag_count != samp0_count) {
                max_count = my_tag_count;
                break;
            }
            // TODO set the command time from the sample time
            msg_handler_command(value);
        }

        // set the time specification in the metadata
        else if (pmt::equal(key, TIME_KEY)) {
            if (my_tag_count != samp0_count) {
                max_count = my_tag_count;
                break;
            }
            found_time_tag = true;
            _metadata.has_time_spec = true;
            _metadata.time_spec =
                ::uhd::time_spec_t(pmt::to_uint64(pmt::tuple_ref(value, 0)),
                                   pmt::to_double(pmt::tuple_ref(value, 1)));
        }

        // set the start of burst flag in the metadata; ignore if length_tag_key is not
        // null
        else if (pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) {
            if (my_tag.offset != samp0_count) {
                max_count = my_tag_count;
                break;
            }
            // Bursty tx will not use time specs, unless a tx_time tag is also given.
            _metadata.has_time_spec = false;
            _metadata.start_of_burst = pmt::to_bool(value);
        }

        // length_tag found; set the start of burst flag in the metadata
        else if (not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) {
            if (my_tag_count != samp0_count) {
                max_count = my_tag_count;
                break;
            }
            // If there are still items left to send, the current burst has been
            // preempted. Set the items remaining counter to the new burst length. Notify
            // the user of the tag preemption.
            else if (_nitems_to_send > 0) {
                GR_LOG_ERROR(d_logger, "tP");
            }
            _nitems_to_send = pmt::to_long(value);
            _metadata.start_of_burst = true;
        }

        /* II. Tags that can be on the first OR last sample of a burst
         *
         * This includes:
         * - tx_freq
         *
         * With these tags, we check if they're at the start of a burst, and do
         * the appropriate action. Otherwise, make sure the corresponding sample
         * is the last one.
         */
        else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) {
            // If it's on the first sample, immediately do the tune:
            GR_LOG_DEBUG(d_debug_logger, "Received tx_freq on start of burst.");
            pmt::pmt_t freq_cmd = pmt::make_dict();
            freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value);
            msg_handler_command(freq_cmd);
        } else if (pmt::equal(key, FREQ_KEY)) {
            // If it's not on the first sample, queue this command and only tx until here:
            GR_LOG_DEBUG(d_debug_logger, "Received tx_freq mid-burst.");
            pmt::pmt_t freq_cmd = pmt::make_dict();
            freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value);
            commands_in_burst.push_back(freq_cmd);
            max_count = my_tag_count + 1;
            in_burst_cmd_offset = my_tag_count;
        }

        /* III. Tags that can only be on the last sample of a burst
         *
         * This includes:
         * - tx_eob
         *
         * Make sure that no more samples are allowed through.
         */
        else if (pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) {
            found_eob = true;
            max_count = my_tag_count + 1;
            _metadata.end_of_burst = pmt::to_bool(value);
        }
    } // end foreach

    if (not pmt::is_null(_length_tag_key) &&
        long(max_count - samp0_count) == _nitems_to_send) {
        found_eob = true;
    }

    // If a command was found in-burst that may appear at the end of burst,
    // there's two options:
    // 1) The command was actually on the last sample (eob). Then, stash the
    //    commands for running after work().
    // 2) The command was not on the last sample. In this case, only send()
    //    until before the tag, so it will be on the first sample of the next run.
    if (not commands_in_burst.empty()) {
        if (not found_eob) {
            // ...then it's in the middle of a burst, only send() until before the tag
            max_count = in_burst_cmd_offset;
        } else if (in_burst_cmd_offset < max_count) {
            for (const auto& cmd_pmt : commands_in_burst) {
                _pending_cmds.push_back(cmd_pmt);
            }
        }
    }

    if (found_time_tag) {
        _metadata.has_time_spec = true;
    }

    // Only transmit up to and including end of burst,
    // or everything if no burst boundaries are found.
    ninput_items = int(max_count - samp0_count);

} // end tag_work()

void usrp_sink_impl::set_start_time(const ::uhd::time_spec_t& time)
{
    _start_time = time;
    _start_time_set = true;
    _stream_now = false;
}

// Send an empty start-of-burst packet to begin streaming.
// Set at a time in the near future to avoid late packets.
bool usrp_sink_impl::start(void)
{
    if (not _tx_stream)
        _tx_stream = _dev->get_tx_stream(_stream_args);

    _metadata.start_of_burst = true;
    _metadata.end_of_burst = false;
    // Bursty tx will need to send a tx_time to activate time spec
    _metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key);
    _nitems_to_send = 0;

    if (pmt::is_null(_length_tag_key)) { // don't execute this part in burst mode
        _metadata.start_of_burst = true;
        _metadata.end_of_burst = false;
        _metadata.has_time_spec = false;

        if (!_stream_now) {
            _metadata.has_time_spec = true;
            if (_start_time_set) {
                _start_time_set = false; // cleared for next run
                _metadata.time_spec = _start_time;
            } else {
                _metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.15);
            }
        }

        _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
    }
    return true;
}

// Send an empty end-of-burst packet to end streaming.
// Ending the burst avoids an underflow error on stop.
bool usrp_sink_impl::stop(void)
{
    _metadata.start_of_burst = false;
    _metadata.end_of_burst = true;
    _metadata.has_time_spec = false;
    _nitems_to_send = 0;

    if (_tx_stream) {
        _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
    }
    return true;
}


void usrp_sink_impl::setup_rpc()
{
#ifdef GR_CTRLPORT
    add_rpc_variable(rpcbasic_sptr(new rpcbasic_register_handler<usrp_block>(
        alias(), "command", "", "UHD Commands", RPC_PRIVLVL_MIN, DISPNULL)));
#endif /* GR_CTRLPORT */
}

void usrp_sink_impl::async_event_loop()
{
    typedef ::uhd::async_metadata_t md_t;
    md_t metadata;

    while (_async_event_loop_running) {
        while (!_dev->get_device()->recv_async_msg(metadata, 0.1)) {
            if (!_async_event_loop_running) {
                return;
            }
        }

        pmt::pmt_t event_list = pmt::PMT_NIL;

        if (metadata.event_code & md_t::EVENT_CODE_BURST_ACK) {
            event_list = pmt::list_add(event_list, BURST_ACK_KEY);
        }
        if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW) {
            event_list = pmt::list_add(event_list, UNDERFLOW_KEY);
        }
        if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW_IN_PACKET) {
            event_list = pmt::list_add(event_list, UNDERFLOW_IN_PACKET_KEY);
        }
        if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR) {
            event_list = pmt::list_add(event_list, SEQ_ERROR_KEY);
        }
        if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR_IN_BURST) {
            event_list = pmt::list_add(event_list, SEQ_ERROR_IN_BURST_KEY);
        }
        if (metadata.event_code & md_t::EVENT_CODE_TIME_ERROR) {
            event_list = pmt::list_add(event_list, TIME_ERROR_KEY);
        }

        if (!pmt::eq(event_list, pmt::PMT_NIL)) {
            pmt::pmt_t value =
                pmt::dict_add(pmt::make_dict(), EVENT_CODE_KEY, event_list);
            if (metadata.has_time_spec) {
                pmt::pmt_t time_spec =
                    pmt::cons(pmt::from_long(metadata.time_spec.get_full_secs()),
                              pmt::from_double(metadata.time_spec.get_frac_secs()));
                value = pmt::dict_add(value, TIME_SPEC_KEY, time_spec);
            }
            value = pmt::dict_add(value, CHANNEL_KEY, pmt::from_uint64(metadata.channel));
            pmt::pmt_t msg = pmt::cons(ASYNC_MSG_KEY, value);
            message_port_pub(ASYNC_MSGS_PORT_KEY, msg);
        }
    }
}

} /* namespace uhd */
} /* namespace gr */