#!/usr/bin/env python # # Copyright 2014 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # """ TXs a waveform (either from a file, or a sinusoid) in a frequency-hopping manner. """ import numpy import argparse import pmt from gnuradio import gr from gnuradio import blocks from gnuradio import uhd def setup_parser(): """ Setup the parser for the frequency hopper. """ parser = argparse.ArgumentParser( description="Transmit a signal in a frequency-hopping manner, using tx_freq tags." ) parser.add_argument('-i', '--input-file', type=file, default=None, help="File with samples to transmit. If left out, will transmit a sinusoid.") parser.add_argument("-a", "--args", default="", help="UHD device address args.") parser.add_argument("--spec", default="", help="UHD subdev spec.") parser.add_argument("--antenna", default="", help="UHD antenna settings.") parser.add_argument("--gain", default=None, type=float, help="USRP gain (defaults to mid-point in dB).") parser.add_argument("-r", "--rate", type=float, default=1e6, help="Sampling rate") parser.add_argument("-N", "--samp-per-burst", type=int, default=10000, help="Samples per burst") parser.add_argument("-t", "--hop-time", type=float, default=1000, help="Time between hops in milliseconds. This must be larger than or equal to the burst duration as set by --samp-per-burst") parser.add_argument("-f", "--freq", type=float, default=2.45e9, help="Base frequency. This is the middle channel frequency at which the USRP will Tx.") parser.add_argument("--dsp", action='store_true', help="DSP tuning only.") parser.add_argument("-d", "--freq-delta", type=float, default=1e6, help="Channel spacing.") parser.add_argument("-c", "--num-channels", type=int, default=5, help="Number of channels.") parser.add_argument("-B", "--num-bursts", type=int, default=30, help="Number of bursts to transmit before terminating.") parser.add_argument("-p", "--post-tuning", action='count', help="Tune after transmitting. Default is to tune immediately before transmitting.") parser.add_argument("-v", "--verbose", action='count', help="Print more information. The morer the printier.") return parser class FrequencyHopperSrc(gr.hier_block2): """ Provides tags for frequency hopping """ def __init__( self, n_bursts, n_channels, freq_delta, base_freq, dsp_tuning, burst_length, base_time, hop_time, post_tuning=False, tx_gain=0, verbose=False ): gr.hier_block2.__init__(self, "FrequencyHopperSrc", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex), ) n_samples_total = n_bursts * burst_length lowest_frequency = base_freq - numpy.floor(n_channels/2) * freq_delta self.hop_sequence = [lowest_frequency + n * freq_delta for n in xrange(n_channels)] numpy.random.shuffle(self.hop_sequence) # Repeat that: self.hop_sequence = [self.hop_sequence[x % n_channels] for x in xrange(n_bursts)] if verbose: print "Hop Frequencies | Hop Pattern" print "=================|================================" for f in self.hop_sequence: print "{:6.3f} MHz | ".format(f/1e6), if n_channels < 50: print " " * int((f - base_freq) / freq_delta) + "#" else: print "\n" print "=================|================================" # There's no real point in setting the gain via tag for this application, # but this is an example to show you how to do it. gain_tag = gr.tag_t() gain_tag.offset = 0 gain_tag.key = pmt.string_to_symbol('tx_command') gain_tag.value = pmt.to_pmt({'gain': tx_gain}) tag_list = [gain_tag,] for i in xrange(len(self.hop_sequence)): tune_tag = gr.tag_t() tune_tag.offset = i * burst_length if i > 0 and post_tuning and not dsp_tuning: # TODO dsp_tuning should also be able to do post_tuning tune_tag.offset -= 1 # Move it to last sample of previous burst if dsp_tuning: tune_tag.key = pmt.string_to_symbol('tx_command') tune_tag.value = pmt.to_pmt({'lo_freq': base_freq, 'dsp_freq': base_freq - self.hop_sequence[i]}) else: tune_tag.key = pmt.string_to_symbol('tx_freq') tune_tag.value = pmt.to_pmt(self.hop_sequence[i]) tag_list.append(tune_tag) length_tag = gr.tag_t() length_tag.offset = i * burst_length length_tag.key = pmt.string_to_symbol('packet_len') length_tag.value = pmt.from_long(burst_length) tag_list.append(length_tag) time_tag = gr.tag_t() time_tag.offset = i * burst_length time_tag.key = pmt.string_to_symbol('tx_time') time_tag.value = pmt.make_tuple( pmt.from_uint64(int(base_time + i * hop_time)), pmt.from_double((base_time + i * hop_time) % 1), ) tag_list.append(time_tag) tag_source = blocks.vector_source_c((1.0,) * n_samples_total, repeat=False, tags=tag_list) mult = blocks.multiply_cc() self.connect(self, mult, self) self.connect(tag_source, (mult, 1)) class FlowGraph(gr.top_block): """ Flow graph that does the frequency hopping. """ def __init__(self, options): gr.top_block.__init__(self) if options.input_file is not None: src = blocks.file_source(gr.sizeof_gr_complex, options.filename, repeat=True) else: src = blocks.vector_source_c((.5,) * int(1e6) * 2, repeat=True) # Setup USRP self.u = uhd.usrp_sink(options.args, uhd.stream_args('fc32'), "packet_len") if(options.spec): self.u.set_subdev_spec(options.spec, 0) if(options.antenna): self.u.set_antenna(options.antenna, 0) self.u.set_samp_rate(options.rate) # Gain is set in the hopper block if options.gain is None: g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2.0 print "-- Setting gain to {} dB".format(options.gain) r = self.u.set_center_freq(options.freq) if not r: print '[ERROR] Failed to set base frequency.' raise SystemExit, 1 hopper_block = FrequencyHopperSrc( options.num_bursts, options.num_channels, options.freq_delta, options.freq, options.dsp, options.samp_per_burst, 1.0, options.hop_time / 1000., options.post_tuning, options.gain, options.verbose, ) self.connect(src, hopper_block, self.u) def print_hopper_stats(args): """ Nothing to do with Grace Hopper """ print """ Parameter | Value ===================+========================= Hop Interval | {hop_time} ms Burst duration | {hop_duration} ms Lowest Frequency | {lowest_freq:6.3f} MHz Highest Frequency | {highest_freq:6.3f} MHz Frequency spacing | {freq_delta:6.4f} MHz Number of channels | {num_channels} Sampling rate | {rate} Msps Transmit Gain | {gain} dB ===================+========================= """.format( hop_time=args.hop_time, hop_duration=1000.0/args.rate*args.samp_per_burst, gain=args.gain, lowest_freq=args.freq/1e6, highest_freq=(args.freq + (args.num_channels-1) * args.freq_delta)/1e6, freq_delta=args.freq_delta/1e6, num_channels=args.num_channels, rate=args.rate/1e6, ) def main(): """ Go, go, go! """ args = setup_parser().parse_args() if (1.0 * args.samp_per_burst / args.rate) > args.hop_time * 1e-3: print "Burst duration must be smaller than hop time." exit(1) if args.verbose: print_hopper_stats(args) top_block = FlowGraph(args) print "Starting to hop, skip and jump... press Ctrl+C to exit." top_block.u.set_time_now(uhd.time_spec(0.0)) top_block.run() if __name__ == '__main__': try: main() except KeyboardInterrupt: pass