/* -*- c++ -*- */ /* * Copyright 2004,2010,2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "siso_f_impl.h" #include <gr_io_signature.h> #include <stdexcept> #include <assert.h> #include <iostream> namespace gr { namespace trellis { static const float INF = 1.0e9; siso_f::sptr siso_f::make(const fsm &FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE) { return gnuradio::get_initial_sptr (new siso_f_impl(FSM, K, S0, SK, POSTI, POSTO, SISO_TYPE)); } siso_f_impl::siso_f_impl(const fsm &FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE) : gr_block("siso_f", gr_make_io_signature(1, -1, sizeof(float)), gr_make_io_signature(1, -1, sizeof(float))), d_FSM(FSM), d_K(K), d_S0(S0),d_SK(SK), d_POSTI(POSTI), d_POSTO(POSTO), d_SISO_TYPE(SISO_TYPE)//, //d_alpha(FSM.S()*(K+1)), //d_beta(FSM.S()*(K+1)) { int multiple; if(d_POSTI && d_POSTO) multiple = d_FSM.I()+d_FSM.O(); else if(d_POSTI) multiple = d_FSM.I(); else if(d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error ("Not both POSTI and POSTO can be false."); //printf("constructor: Multiple = %d\n",multiple); set_output_multiple (d_K*multiple); //what is the meaning of relative rate for a block with 2 inputs? //set_relative_rate ( multiple / ((double) d_FSM.I()) ); // it turns out that the above gives problems in the scheduler, so // let's try (assumption O>I) //set_relative_rate ( multiple / ((double) d_FSM.O()) ); // I am tempted to automate like this if(d_FSM.I() <= d_FSM.O()) set_relative_rate(multiple / ((double) d_FSM.O())); else set_relative_rate(multiple / ((double) d_FSM.I())); } siso_f_impl::~siso_f_impl() { } void siso_f_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required) { int multiple; if(d_POSTI && d_POSTO) multiple = d_FSM.I()+d_FSM.O(); else if(d_POSTI) multiple = d_FSM.I(); else if(d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error ("Not both POSTI and POSTO can be false."); //printf("forecast: Multiple = %d\n",multiple); int input_required1 = d_FSM.I() * (noutput_items/multiple) ; int input_required2 = d_FSM.O() * (noutput_items/multiple) ; //printf("forecast: Output requirements: %d\n",noutput_items); //printf("forecast: Input requirements: %d %d\n",input_required1,input_required2); unsigned ninputs = ninput_items_required.size(); for(unsigned int i = 0; i < ninputs/2; i++) { ninput_items_required[2*i] = input_required1; ninput_items_required[2*i+1] = input_required2; } } int siso_f_impl::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int nstreams = output_items.size(); //printf("general_work:Streams: %d\n",nstreams); int multiple; if(d_POSTI && d_POSTO) multiple = d_FSM.I()+d_FSM.O(); else if(d_POSTI) multiple = d_FSM.I(); else if(d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error("siso_f_impl: Not both POSTI and POSTO can be false.\n"); int nblocks = noutput_items / (d_K*multiple); //printf("general_work:Blocks: %d\n",nblocks); //for(int i=0;i<ninput_items.size();i++) //printf("general_work:Input items available: %d\n",ninput_items[i]); float (*p2min)(float, float) = NULL; if(d_SISO_TYPE == TRELLIS_MIN_SUM) p2min = &min; else if(d_SISO_TYPE == TRELLIS_SUM_PRODUCT) p2min = &min_star; for(int m = 0; m < nstreams; m++) { const float *in1 = (const float*)input_items[2*m]; const float *in2 = (const float*)input_items[2*m+1]; float *out = (float*)output_items[m]; for(int n = 0;n < nblocks; n++) { siso_algorithm(d_FSM.I(),d_FSM.S(),d_FSM.O(), d_FSM.NS(),d_FSM.OS(),d_FSM.PS(),d_FSM.PI(), d_K,d_S0,d_SK, d_POSTI,d_POSTO, p2min, &(in1[n*d_K*d_FSM.I()]),&(in2[n*d_K*d_FSM.O()]), &(out[n*d_K*multiple])//, //d_alpha,d_beta ); } } for(unsigned int i = 0; i < input_items.size()/2; i++) { consume(2*i,d_FSM.I() * noutput_items / multiple ); consume(2*i+1,d_FSM.O() * noutput_items / multiple ); } return noutput_items; } } /* namespace trellis */ } /* namespace gr */