/* -*- c++ -*- */ /* * Copyright 2004,2010,2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "siso_f_impl.h" #include <gnuradio/io_signature.h> #include <assert.h> #include <iostream> #include <stdexcept> namespace gr { namespace trellis { siso_f::sptr siso_f::make( const fsm& FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE) { return gnuradio::make_block_sptr<siso_f_impl>( FSM, K, S0, SK, POSTI, POSTO, SISO_TYPE); } void siso_f_impl::recalculate() { int multiple; if (d_POSTI && d_POSTO) multiple = d_FSM.I() + d_FSM.O(); else if (d_POSTI) multiple = d_FSM.I(); else if (d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error("Not both POSTI and POSTO can be false."); set_output_multiple(d_K * multiple); // what is the meaning of relative rate for a block with 2 inputs? // set_relative_rate ( (uint64_t) multiple, (uint64_t) d_FSM.I() ); // it turns out that the above gives problems in the scheduler, so // let's try (assumption O>I) // set_relative_rate ( (uint64_t) multiple, (uint64_t) d_FSM.O() ); // I am tempted to automate like this if (d_FSM.I() <= d_FSM.O()) set_relative_rate((uint64_t)multiple, (uint64_t)d_FSM.O()); else set_relative_rate((uint64_t)multiple, (uint64_t)d_FSM.I()); } siso_f_impl::siso_f_impl( const fsm& FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE) : block("siso_f", io_signature::make(1, -1, sizeof(float)), io_signature::make(1, -1, sizeof(float))), d_FSM(FSM), d_K(K), d_S0(S0), d_SK(SK), d_POSTI(POSTI), d_POSTO(POSTO), d_SISO_TYPE(SISO_TYPE) //, // d_alpha(FSM.S()*(K+1)), // d_beta(FSM.S()*(K+1)) { recalculate(); } void siso_f_impl::set_FSM(const fsm& FSM) { gr::thread::scoped_lock guard(d_setlock); d_FSM = FSM; recalculate(); } void siso_f_impl::set_K(int K) { gr::thread::scoped_lock guard(d_setlock); d_K = K; recalculate(); } void siso_f_impl::set_POSTI(bool POSTI) { gr::thread::scoped_lock guard(d_setlock); d_POSTI = POSTI; recalculate(); } void siso_f_impl::set_POSTO(bool POSTO) { gr::thread::scoped_lock guard(d_setlock); d_POSTO = POSTO; recalculate(); } void siso_f_impl::set_S0(int S0) { gr::thread::scoped_lock guard(d_setlock); d_S0 = S0; } void siso_f_impl::set_SK(int SK) { gr::thread::scoped_lock guard(d_setlock); d_SK = SK; } void siso_f_impl::set_SISO_TYPE(trellis::siso_type_t type) { gr::thread::scoped_lock guard(d_setlock); d_SISO_TYPE = type; } siso_f_impl::~siso_f_impl() {} void siso_f_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required) { int multiple; if (d_POSTI && d_POSTO) multiple = d_FSM.I() + d_FSM.O(); else if (d_POSTI) multiple = d_FSM.I(); else if (d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error("Not both POSTI and POSTO can be false."); // printf("forecast: Multiple = %d\n",multiple); int input_required1 = d_FSM.I() * (noutput_items / multiple); int input_required2 = d_FSM.O() * (noutput_items / multiple); // printf("forecast: Output requirements: %d\n",noutput_items); // printf("forecast: Input requirements: %d %d\n",input_required1,input_required2); unsigned ninputs = ninput_items_required.size(); for (unsigned int i = 0; i < ninputs / 2; i++) { ninput_items_required[2 * i] = input_required1; ninput_items_required[2 * i + 1] = input_required2; } } int siso_f_impl::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { gr::thread::scoped_lock guard(d_setlock); int nstreams = output_items.size(); // printf("general_work:Streams: %d\n",nstreams); int multiple; if (d_POSTI && d_POSTO) multiple = d_FSM.I() + d_FSM.O(); else if (d_POSTI) multiple = d_FSM.I(); else if (d_POSTO) multiple = d_FSM.O(); else throw std::runtime_error("siso_f_impl: Not both POSTI and POSTO can be false."); int nblocks = noutput_items / (d_K * multiple); // printf("general_work:Blocks: %d\n",nblocks); // for(int i=0;i<ninput_items.size();i++) // printf("general_work:Input items available: %d\n",ninput_items[i]); float (*p2min)(float, float) = NULL; if (d_SISO_TYPE == TRELLIS_MIN_SUM) p2min = &min; else if (d_SISO_TYPE == TRELLIS_SUM_PRODUCT) p2min = &min_star; for (int m = 0; m < nstreams; m++) { const float* in1 = (const float*)input_items[2 * m]; const float* in2 = (const float*)input_items[2 * m + 1]; float* out = (float*)output_items[m]; for (int n = 0; n < nblocks; n++) { siso_algorithm(d_FSM.I(), d_FSM.S(), d_FSM.O(), d_FSM.NS(), d_FSM.OS(), d_FSM.PS(), d_FSM.PI(), d_K, d_S0, d_SK, d_POSTI, d_POSTO, p2min, &(in1[n * d_K * d_FSM.I()]), &(in2[n * d_K * d_FSM.O()]), &(out[n * d_K * multiple]) //, // d_alpha,d_beta ); } } for (unsigned int i = 0; i < input_items.size() / 2; i++) { consume(2 * i, d_FSM.I() * noutput_items / multiple); consume(2 * i + 1, d_FSM.O() * noutput_items / multiple); } return noutput_items; } } /* namespace trellis */ } /* namespace gr */