#!/usr/bin/env python from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import trellis, digital, blocks from gnuradio import eng_notation import math import sys import random from gnuradio.trellis import fsm_utils from gnuradio.eng_option import eng_option from optparse import OptionParser import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed): tb = gr.top_block () # TX numpy.random.seed(-seed) packet = numpy.random.randint(0,2,Kb) # create Kb random bits packet[Kb-10:Kb]=0 packet[0:Kb]=0 src = blocks.vector_source_s(packet.tolist(),False) b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 mod = digital.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = blocks.add_ff() noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0 / 2),int(seed)) # RX va = trellis.viterbi_combined_fs(f,K,0,0,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set. fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits dst = blocks.vector_sink_s(); tb.connect (src,b2s,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,va,fsmi2s,s2b,dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() if len(dst.data()) != len(packet): print("Error: not enough data:", len(dst.data()), len(packet)) ntotal=len(packet) nwrong = sum(abs(packet-numpy.array(dst.data()))); return (ntotal,nwrong,abs(packet-numpy.array(dst.data()))) def main(): parser = OptionParser(option_class=eng_option) parser.add_option("-f", "--fsm_file", type="string", default="fsm_files/awgn1o2_4.fsm", help="Filename containing the fsm specification, e.g. -f fsm_files/awgn1o2_4.fsm (default=fsm_files/awgn1o2_4.fsm)") parser.add_option("-e", "--esn0", type="eng_float", default=10.0, help="Symbol energy to noise PSD level ratio in dB, e.g., -e 10.0 (default=10.0)") parser.add_option("-r", "--repetitions", type="int", default=100, help="Number of packets to be generated for the simulation, e.g., -r 100 (default=100)") (options, args) = parser.parse_args () if len(args) != 0: parser.print_help() raise SystemExit(1) fname=options.fsm_file esn0_db=float(options.esn0) rep=int(options.repetitions) # system parameters f=trellis.fsm(fname) # get the FSM specification from a file # alternatively you can specify the fsm from its generator matrix #f=trellis.fsm(1,2,[5,7]) Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short) bitspersymbol = int(round(math.log(f.I()) / math.log(2))) # bits per FSM input symbol K=Kb / bitspersymbol # packet size in trellis steps modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations dimensionality = modulation[0] constellation = modulation[1] if len(constellation) / dimensionality != f.O(): sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n') sys.exit (1) # calculate average symbol energy Es = 0 for i in range(len(constellation)): Es = Es + constellation[i]**2 Es = Es / (len(constellation)//dimensionality) N0=Es / pow(10.0,esn0_db/10.0); # calculate noise variance tot_b=0 # total number of transmitted bits terr_b=0 # total number of bits in error terr_p=0 # total number of packets in error for i in range(rep): (b,e,pattern)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-(666+i)) # run experiment with different seed to get different noise realizations tot_b=tot_b+b terr_b=terr_b+e terr_p=terr_p+(e!=0) if ((i+1)%100==0) : # display progress print(i+1,terr_p, '%.2e' % ((1.0*terr_p) / (i+1)),tot_b,terr_b, '%.2e' % ((1.0*terr_b) / tot_b)) if e!=0: print("rep=",i, e) for k in range(Kb): if pattern[k]!=0: print(k) # estimate of the bit error rate print(rep,terr_p, '%.2e' % ((1.0*terr_p) / (i+1)),tot_b,terr_b, '%.2e' % ((1.0*terr_b) / tot_b)) if __name__ == '__main__': main()