#!/usr/bin/env python

from gnuradio import gr
from gnuradio import trellis, digital, blocks
from gnuradio import eng_notation
import math
import sys
import random
from gnuradio.trellis import fsm_utils
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import numpy

try:
    from gnuradio import analog
except ImportError:
    sys.stderr.write("Error: Program requires gr-analog.\n")
    sys.exit(1)


def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed):
    tb = gr.top_block()

    # TX
    numpy.random.seed(-seed)
    packet = numpy.random.randint(0, 2, Kb)  # create Kb random bits
    packet[Kb - 10:Kb] = 0
    packet[0:Kb] = 0
    src = blocks.vector_source_s(packet.tolist(), False)
    b2s = blocks.unpacked_to_packed_ss(
        1, gr.GR_MSB_FIRST)  # pack bits in shorts
    # unpack shorts to symbols compatible with the FSM input cardinality
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol, gr.GR_MSB_FIRST)
    enc = trellis.encoder_ss(f, 0)  # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(
        analog.GR_GAUSSIAN, math.sqrt(N0 / 2), int(seed))

    # RX
    # Put -1 if the Initial/Final states are not set.
    va = trellis.viterbi_combined_fs(
        f, K, 0, 0, dimensionality, constellation, digital.TRELLIS_EUCLIDEAN)
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    s2b = blocks.packed_to_unpacked_ss(
        1, gr.GR_MSB_FIRST)  # unpack shorts to bits
    dst = blocks.vector_sink_s()

    tb.connect(src, b2s, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, va, fsmi2s, s2b, dst)

    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    # print "final state = " , enc.ST()

    if len(dst.data()) != len(packet):
        print("Error: not enough data:", len(dst.data()), len(packet))
    ntotal = len(packet)
    nwrong = sum(abs(packet - numpy.array(dst.data())))
    return (ntotal, nwrong, abs(packet - numpy.array(dst.data())))


def main():
    parser = OptionParser(option_class=eng_option)
    parser.add_option("-f", "--fsm_file", type="string", default="fsm_files/awgn1o2_4.fsm",
                      help="Filename containing the fsm specification, e.g. -f fsm_files/awgn1o2_4.fsm (default=fsm_files/awgn1o2_4.fsm)")
    parser.add_option("-e", "--esn0", type="eng_float", default=10.0,
                      help="Symbol energy to noise PSD level ratio in dB, e.g., -e 10.0 (default=10.0)")
    parser.add_option("-r", "--repetitions", type="int", default=100,
                      help="Number of packets to be generated for the simulation, e.g., -r 100 (default=100)")

    (options, args) = parser.parse_args()
    if len(args) != 0:
        parser.print_help()
        raise SystemExit(1)

    fname = options.fsm_file
    esn0_db = float(options.esn0)
    rep = int(options.repetitions)

    # system parameters
    f = trellis.fsm(fname)  # get the FSM specification from a file
    # alternatively you can specify the fsm from its generator matrix
    # f=trellis.fsm(1,2,[5,7])
    # packet size in bits (make it multiple of 16 so it can be packed in a short)
    Kb = 1024 * 16
    # bits per FSM input symbol
    bitspersymbol = int(round(math.log(f.I()) / math.log(2)))
    K = Kb / bitspersymbol  # packet size in trellis steps
    modulation = fsm_utils.psk4  # see fsm_utlis.py for available predefined modulations
    dimensionality = modulation[0]
    constellation = modulation[1]
    if len(constellation) / dimensionality != f.O():
        sys.stderr.write(
            'Incompatible FSM output cardinality and modulation size.\n')
        sys.exit(1)
    # calculate average symbol energy
    Es = 0
    for i in range(len(constellation)):
        Es = Es + constellation[i]**2
    Es = Es / (len(constellation) // dimensionality)
    N0 = Es / pow(10.0, esn0_db / 10.0)  # calculate noise variance

    tot_b = 0  # total number of transmitted bits
    terr_b = 0  # total number of bits in error
    terr_p = 0  # total number of packets in error
    for i in range(rep):
        # run experiment with different seed to get different noise realizations
        (b, e, pattern) = run_test(f, Kb, bitspersymbol,
                                   K, dimensionality, constellation, N0, -(666 + i))
        tot_b = tot_b + b
        terr_b = terr_b + e
        terr_p = terr_p + (e != 0)
        if ((i + 1) % 100 == 0):  # display progress
            print(i + 1, terr_p, '%.2e' % ((1.0 * terr_p) / (i + 1)),
                  tot_b, terr_b, '%.2e' % ((1.0 * terr_b) / tot_b))
        if e != 0:
            print("rep=", i, e)
            for k in range(Kb):
                if pattern[k] != 0:
                    print(k)
    # estimate of the bit error rate
    print(rep, terr_p, '%.2e' % ((1.0 * terr_p) / (i + 1)),
          tot_b, terr_b, '%.2e' % ((1.0 * terr_b) / tot_b))


if __name__ == '__main__':
    main()