#!/usr/bin/env python from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import audio from gnuradio import trellis, digital, blocks from gnuradio import eng_notation import math import sys import random import fsm_utils try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed): tb = gr.top_block () # TX src = blocks.lfsr_32k_source_s() src_head = blocks.head (gr.sizeof_short,Kb / 16) # packet size in shorts s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 mod = digital.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = blocks.add_ff() noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0 / 2),seed) # RX metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = blocks.check_lfsr_32k_s(); tb.connect (src,src_head,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,metrics) tb.connect (metrics,va,fsmi2s,dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright) def main(args): nargs = len (args) if nargs == 3: fname=args[0] esn0_db=float(args[1]) # Es/No in dB rep=int(args[2]) # number of times the experiment is run to collect enough errors else: sys.stderr.write ('usage: test_tcm.py fsm_fname Es/No_db repetitions\n') sys.exit (1) # system parameters f=trellis.fsm(fname) # get the FSM specification from a file Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short) bitspersymbol = int(round(math.log(f.I()) / math.log(2))) # bits per FSM input symbol K=Kb / bitspersymbol # packet size in trellis steps modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations dimensionality = modulation[0] constellation = modulation[1] if len(constellation) / dimensionality != f.O(): sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n') sys.exit (1) # calculate average symbol energy Es = 0 for i in range(len(constellation)): Es = Es + constellation[i]**2 Es = Es / (old_div(len(constellation,dimensionality))) N0=Es / pow(10.0,old_div(esn0_db,10.0)); # noise variance tot_s=0 terr_s=0 for i in range(rep): (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-int(666+i)) # run experiment with different seed to get different noise realizations tot_s=tot_s+s terr_s=terr_s+e if (i%100==0): print(i,s,e,tot_s,terr_s, '%e' % ((1.0*terr_s) / tot_s)) # estimate of the (short) error rate print(tot_s,terr_s, '%e' % ((1.0*terr_s) / tot_s)) if __name__ == '__main__': main (sys.argv[1:])