/* -*- c++ -*- */ /* * Copyright 2011-2013,2015,2019 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "time_sink_c_impl.h" #include <gnuradio/fft/fft.h> #include <gnuradio/io_signature.h> #include <gnuradio/prefs.h> #include <qwt_symbol.h> #include <volk/volk.h> #include <string.h> #include <algorithm> namespace gr { namespace qtgui { time_sink_c::sptr time_sink_c::make(int size, double samp_rate, const std::string& name, unsigned int nconnections, QWidget* parent) { return gnuradio::make_block_sptr<time_sink_c_impl>( size, samp_rate, name, nconnections, parent); } time_sink_c_impl::time_sink_c_impl(int size, double samp_rate, const std::string& name, unsigned int nconnections, QWidget* parent) : sync_block("time_sink_c", io_signature::make(0, nconnections, sizeof(gr_complex)), io_signature::make(0, 0, 0)), d_size(size), d_buffer_size(2 * size), d_samp_rate(samp_rate), d_name(name), d_nconnections(2 * nconnections), d_tag_key(pmt::mp("tags")), d_parent(parent) { if (nconnections > 12) throw std::runtime_error("time_sink_c only supports up to 12 inputs"); // Required now for Qt; argc must be greater than 0 and argv // must have at least one valid character. Must be valid through // life of the qApplication: // http://harmattan-dev.nokia.com/docs/library/html/qt4/qapplication.html d_argc = 1; d_argv = new char; d_argv[0] = '\0'; d_main_gui = NULL; // setup PDU handling input port message_port_register_in(pmt::mp("in")); set_msg_handler(pmt::mp("in"), [this](pmt::pmt_t msg) { this->handle_pdus(msg); }); // +2 for the PDU message buffers for (unsigned int n = 0; n < d_nconnections + 2; n++) { d_buffers.push_back( (double*)volk_malloc(d_buffer_size * sizeof(double), volk_get_alignment())); memset(d_buffers[n], 0, d_buffer_size * sizeof(double)); } // We don't use cbuffers with the PDU message handling capabilities. for (unsigned int n = 0; n < d_nconnections / 2; n++) { d_cbuffers.push_back((gr_complex*)volk_malloc(d_buffer_size * sizeof(gr_complex), volk_get_alignment())); std::fill_n(d_cbuffers[n], d_buffer_size, 0); } // Set alignment properties for VOLK const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex); set_alignment(std::max(1, alignment_multiple)); d_tags = std::vector<std::vector<gr::tag_t>>(d_nconnections / 2); initialize(); d_main_gui->setNPoints(d_size); // setup GUI box with size set_trigger_mode(TRIG_MODE_FREE, TRIG_SLOPE_POS, 0, 0, 0); set_history(2); // so we can look ahead for the trigger slope declare_sample_delay(1); // delay the tags for a history of 2 } time_sink_c_impl::~time_sink_c_impl() { if (!d_main_gui->isClosed()) d_main_gui->close(); // d_main_gui is a qwidget destroyed with its parent for (unsigned int n = 0; n < d_nconnections + 2; n++) { volk_free(d_buffers[n]); } for (unsigned int n = 0; n < d_nconnections / 2; n++) { volk_free(d_cbuffers[n]); } delete d_argv; } bool time_sink_c_impl::check_topology(int ninputs, int noutputs) { return (unsigned int)(2 * ninputs) == d_nconnections; } void time_sink_c_impl::initialize() { if (qApp != NULL) { d_qApplication = qApp; } else { #if QT_VERSION >= 0x040500 && QT_VERSION < 0x050000 std::string style = prefs::singleton()->get_string("qtgui", "style", "raster"); QApplication::setGraphicsSystem(QString(style.c_str())); #endif d_qApplication = new QApplication(d_argc, &d_argv); } // If a style sheet is set in the prefs file, enable it here. check_set_qss(d_qApplication); unsigned int numplots = (d_nconnections > 0) ? d_nconnections : 2; d_main_gui = new TimeDisplayForm(numplots, d_parent); d_main_gui->setNPoints(d_size); d_main_gui->setSampleRate(d_samp_rate); if (!d_name.empty()) set_title(d_name); // initialize update time to 10 times a second set_update_time(0.1); } void time_sink_c_impl::exec_() { d_qApplication->exec(); } QWidget* time_sink_c_impl::qwidget() { return d_main_gui; } #ifdef ENABLE_PYTHON PyObject* time_sink_c_impl::pyqwidget() { PyObject* w = PyLong_FromVoidPtr((void*)d_main_gui); PyObject* retarg = Py_BuildValue("N", w); return retarg; } #else void* time_sink_c_impl::pyqwidget() { return NULL; } #endif void time_sink_c_impl::set_y_axis(double min, double max) { d_main_gui->setYaxis(min, max); } void time_sink_c_impl::set_y_label(const std::string& label, const std::string& unit) { d_main_gui->setYLabel(label, unit); } void time_sink_c_impl::set_update_time(double t) { // convert update time to ticks gr::high_res_timer_type tps = gr::high_res_timer_tps(); d_update_time = t * tps; d_main_gui->setUpdateTime(t); d_last_time = 0; } void time_sink_c_impl::set_title(const std::string& title) { d_main_gui->setTitle(title.c_str()); } void time_sink_c_impl::set_line_label(unsigned int which, const std::string& label) { d_main_gui->setLineLabel(which, label.c_str()); } void time_sink_c_impl::set_line_color(unsigned int which, const std::string& color) { d_main_gui->setLineColor(which, color.c_str()); } void time_sink_c_impl::set_line_width(unsigned int which, int width) { d_main_gui->setLineWidth(which, width); } void time_sink_c_impl::set_line_style(unsigned int which, int style) { d_main_gui->setLineStyle(which, (Qt::PenStyle)style); } void time_sink_c_impl::set_line_marker(unsigned int which, int marker) { d_main_gui->setLineMarker(which, (QwtSymbol::Style)marker); } void time_sink_c_impl::set_line_alpha(unsigned int which, double alpha) { d_main_gui->setMarkerAlpha(which, (int)(255.0 * alpha)); } void time_sink_c_impl::set_trigger_mode(trigger_mode mode, trigger_slope slope, float level, float delay, int channel, const std::string& tag_key) { gr::thread::scoped_lock lock(d_setlock); d_trigger_mode = mode; d_trigger_slope = slope; d_trigger_level = level; d_trigger_delay = static_cast<int>(delay * d_samp_rate); d_trigger_channel = channel; d_trigger_tag_key = pmt::intern(tag_key); d_triggered = false; d_trigger_count = 0; if ((d_trigger_delay < 0) || (d_trigger_delay >= d_size)) { GR_LOG_WARN( d_logger, boost::format("Trigger delay (%1%) outside of display range (0:%2%).") % (d_trigger_delay / d_samp_rate) % ((d_size - 1) / d_samp_rate)); d_trigger_delay = std::max(0, std::min(d_size - 1, d_trigger_delay)); delay = d_trigger_delay / d_samp_rate; } d_main_gui->setTriggerMode(d_trigger_mode); d_main_gui->setTriggerSlope(d_trigger_slope); d_main_gui->setTriggerLevel(d_trigger_level); d_main_gui->setTriggerDelay(delay); d_main_gui->setTriggerChannel(d_trigger_channel); d_main_gui->setTriggerTagKey(tag_key); _reset(); } void time_sink_c_impl::set_size(int width, int height) { d_main_gui->resize(QSize(width, height)); } std::string time_sink_c_impl::title() { return d_main_gui->title().toStdString(); } std::string time_sink_c_impl::line_label(unsigned int which) { return d_main_gui->lineLabel(which).toStdString(); } std::string time_sink_c_impl::line_color(unsigned int which) { return d_main_gui->lineColor(which).toStdString(); } int time_sink_c_impl::line_width(unsigned int which) { return d_main_gui->lineWidth(which); } int time_sink_c_impl::line_style(unsigned int which) { return d_main_gui->lineStyle(which); } int time_sink_c_impl::line_marker(unsigned int which) { return d_main_gui->lineMarker(which); } double time_sink_c_impl::line_alpha(unsigned int which) { return (double)(d_main_gui->markerAlpha(which)) / 255.0; } void time_sink_c_impl::set_nsamps(const int newsize) { if (newsize != d_size) { gr::thread::scoped_lock lock(d_setlock); // Set new size and reset buffer index // (throws away any currently held data, but who cares?) d_size = newsize; d_buffer_size = 2 * d_size; // Resize buffers and replace data for (unsigned int n = 0; n < d_nconnections + 2; n++) { volk_free(d_buffers[n]); d_buffers[n] = (double*)volk_malloc(d_buffer_size * sizeof(double), volk_get_alignment()); memset(d_buffers[n], 0, d_buffer_size * sizeof(double)); } for (unsigned int n = 0; n < d_nconnections / 2; n++) { volk_free(d_cbuffers[n]); d_cbuffers[n] = (gr_complex*)volk_malloc(d_buffer_size * sizeof(gr_complex), volk_get_alignment()); std::fill_n(d_cbuffers[n], d_buffer_size, 0); } // If delay was set beyond the new boundary, pull it back. if (d_trigger_delay >= d_size) { GR_LOG_WARN(d_logger, boost::format("Trigger delay (%1%) outside of display range " "(0:%2%). Moving to 50%% point.") % (d_trigger_delay / d_samp_rate) % ((d_size - 1) / d_samp_rate)); d_trigger_delay = d_size / 2; d_main_gui->setTriggerDelay(d_trigger_delay / d_samp_rate); } d_main_gui->setNPoints(d_size); _reset(); } } void time_sink_c_impl::set_samp_rate(const double samp_rate) { gr::thread::scoped_lock lock(d_setlock); d_samp_rate = samp_rate; d_main_gui->setSampleRate(d_samp_rate); } int time_sink_c_impl::nsamps() const { return d_size; } void time_sink_c_impl::enable_menu(bool en) { d_main_gui->enableMenu(en); } void time_sink_c_impl::enable_grid(bool en) { d_main_gui->setGrid(en); } void time_sink_c_impl::enable_autoscale(bool en) { d_main_gui->autoScale(en); } void time_sink_c_impl::enable_stem_plot(bool en) { d_main_gui->setStem(en); } void time_sink_c_impl::enable_semilogx(bool en) { d_main_gui->setSemilogx(en); } void time_sink_c_impl::enable_semilogy(bool en) { d_main_gui->setSemilogy(en); } void time_sink_c_impl::enable_control_panel(bool en) { if (en) d_main_gui->setupControlPanel(); else d_main_gui->teardownControlPanel(); } void time_sink_c_impl::enable_tags(unsigned int which, bool en) { d_main_gui->setTagMenu(which, en); } void time_sink_c_impl::enable_tags(bool en) { for (unsigned int n = 0; n < d_nconnections; ++n) { d_main_gui->setTagMenu(n, en); } } void time_sink_c_impl::enable_axis_labels(bool en) { d_main_gui->setAxisLabels(en); } void time_sink_c_impl::disable_legend() { d_main_gui->disableLegend(); } void time_sink_c_impl::reset() { gr::thread::scoped_lock lock(d_setlock); _reset(); } void time_sink_c_impl::_reset() { unsigned int n; if (d_trigger_delay) { for (n = 0; n < d_nconnections / 2; n++) { // Move the tail of the buffers to the front. This section // represents data that might have to be plotted again if a // trigger occurs and we have a trigger delay set. The tail // section is between (d_end-d_trigger_delay) and d_end. memmove(d_cbuffers[n], &d_cbuffers[n][d_end - d_trigger_delay], d_trigger_delay * sizeof(gr_complex)); // Also move the offsets of any tags that occur in the tail // section so they would be plotted again, too. std::vector<gr::tag_t> tmp_tags; for (size_t t = 0; t < d_tags[n].size(); t++) { if (d_tags[n][t].offset > (uint64_t)(d_size - d_trigger_delay)) { d_tags[n][t].offset = d_tags[n][t].offset - (d_size - d_trigger_delay); tmp_tags.push_back(d_tags[n][t]); } } d_tags[n] = tmp_tags; } } // Otherwise, just clear the local list of tags. else { for (n = 0; n < d_nconnections / 2; n++) { d_tags[n].clear(); } } // Reset the start and end indices. d_start = 0; d_end = d_size; // Reset the trigger. If in free running mode, ignore the // trigger delay and always set trigger to true. if (d_trigger_mode == TRIG_MODE_FREE) { d_index = 0; d_triggered = true; } else { d_index = d_trigger_delay; d_triggered = false; } } void time_sink_c_impl::_npoints_resize() { int newsize = d_main_gui->getNPoints(); set_nsamps(newsize); } void time_sink_c_impl::_adjust_tags(int adj) { for (size_t n = 0; n < d_tags.size(); n++) { for (size_t t = 0; t < d_tags[n].size(); t++) { d_tags[n][t].offset += adj; } } } void time_sink_c_impl::_gui_update_trigger() { d_trigger_mode = d_main_gui->getTriggerMode(); d_trigger_slope = d_main_gui->getTriggerSlope(); d_trigger_level = d_main_gui->getTriggerLevel(); d_trigger_channel = d_main_gui->getTriggerChannel(); d_trigger_count = 0; float delayf = d_main_gui->getTriggerDelay(); int delay = static_cast<int>(delayf * d_samp_rate); if (delay != d_trigger_delay) { // We restrict the delay to be within the window of time being // plotted. if ((delay < 0) || (delay >= d_size)) { GR_LOG_WARN( d_logger, boost::format("Trigger delay (%1%) outside of display range (0:%2%).") % (delay / d_samp_rate) % ((d_size - 1) / d_samp_rate)); delay = std::max(0, std::min(d_size - 1, delay)); delayf = delay / d_samp_rate; } d_trigger_delay = delay; d_main_gui->setTriggerDelay(delayf); _reset(); } std::string tagkey = d_main_gui->getTriggerTagKey(); d_trigger_tag_key = pmt::intern(tagkey); } void time_sink_c_impl::_test_trigger_tags(int nitems) { int trigger_index; uint64_t nr = nitems_read(d_trigger_channel / 2); std::vector<gr::tag_t> tags; get_tags_in_range( tags, d_trigger_channel / 2, nr, nr + nitems + 1, d_trigger_tag_key); if (!tags.empty()) { trigger_index = tags[0].offset - nr; int start = d_index + trigger_index - d_trigger_delay - 1; if (start >= 0) { d_triggered = true; d_start = start; d_end = d_start + d_size; d_trigger_count = 0; _adjust_tags(-d_start); } } } void time_sink_c_impl::_test_trigger_norm(int nitems, gr_vector_const_void_star inputs) { int trigger_index; const gr_complex* in = (const gr_complex*)inputs[d_trigger_channel / 2]; for (trigger_index = 0; trigger_index < nitems - 1; trigger_index++) { d_trigger_count++; // Test if trigger has occurred based on the input stream, // channel number, and slope direction if (_test_trigger_slope(&in[trigger_index])) { d_triggered = true; d_start = d_index + trigger_index - d_trigger_delay; d_end = d_start + d_size; d_trigger_count = 0; _adjust_tags(-d_start); break; } } // If using auto trigger mode, trigger periodically even // without a trigger event. if ((d_trigger_mode == TRIG_MODE_AUTO) && (d_trigger_count > d_size)) { d_triggered = true; d_trigger_count = 0; } } bool time_sink_c_impl::_test_trigger_slope(const gr_complex* in) const { float x0, x1; if (d_trigger_channel % 2 == 0) { x0 = in[0].real(); x1 = in[1].real(); } else { x0 = in[0].imag(); x1 = in[1].imag(); } if (d_trigger_slope == TRIG_SLOPE_POS) return ((x0 <= d_trigger_level) && (x1 > d_trigger_level)); else return ((x0 >= d_trigger_level) && (x1 < d_trigger_level)); } int time_sink_c_impl::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { unsigned int n = 0; const gr_complex* in; _npoints_resize(); _gui_update_trigger(); gr::thread::scoped_lock lock(d_setlock); int nfill = d_end - d_index; // how much room left in buffers int nitems = std::min(noutput_items, nfill); // num items we can put in buffers // If auto, normal, or tag trigger, look for the trigger if ((d_trigger_mode != TRIG_MODE_FREE) && !d_triggered) { // trigger off a tag key (first one found) if (d_trigger_mode == TRIG_MODE_TAG) { _test_trigger_tags(nitems); } // Normal or Auto trigger else { _test_trigger_norm(nitems, input_items); } } // Copy data into the buffers. for (n = 0; n < d_nconnections / 2; n++) { in = (const gr_complex*)input_items[n]; memcpy(&d_cbuffers[n][d_index], &in[1], nitems * sizeof(gr_complex)); uint64_t nr = nitems_read(n); std::vector<gr::tag_t> tags; get_tags_in_range(tags, n, nr, nr + nitems); for (size_t t = 0; t < tags.size(); t++) { tags[t].offset = tags[t].offset - nr + (d_index - d_start - 1); } d_tags[n].insert(d_tags[n].end(), tags.begin(), tags.end()); } d_index += nitems; // If we've have a trigger and a full d_size of items in the buffers, plot. if ((d_triggered) && (d_index == d_end)) { // Copy data to be plotted to start of buffers. for (n = 0; n < d_nconnections / 2; n++) { volk_32fc_deinterleave_64f_x2(d_buffers[2 * n + 0], d_buffers[2 * n + 1], &d_cbuffers[n][d_start], d_size); } // Plot if we are able to update if (gr::high_res_timer_now() - d_last_time > d_update_time) { d_last_time = gr::high_res_timer_now(); d_qApplication->postEvent(d_main_gui, new TimeUpdateEvent(d_buffers, d_size, d_tags)); } // We've plotting, so reset the state _reset(); } // If we've filled up the buffers but haven't triggered, reset. if (d_index == d_end) { _reset(); } return nitems; } void time_sink_c_impl::handle_pdus(pmt::pmt_t msg) { size_t len; pmt::pmt_t dict, samples; std::vector<std::vector<gr::tag_t>> t(1); // Test to make sure this is either a PDU or a uniform vector of // samples. Get the samples PMT and the dictionary if it's a PDU. // If not, we throw an error and exit. if (pmt::is_pair(msg)) { dict = pmt::car(msg); samples = pmt::cdr(msg); } else if (pmt::is_uniform_vector(msg)) { samples = msg; } else { throw std::runtime_error("time_sink_c: message must be either " "a PDU or a uniform vector of samples."); } // add tag info if it is present in metadata if (pmt::is_dict(dict)) { if (pmt::dict_has_key(dict, d_tag_key)) { d_tags.clear(); pmt::pmt_t tags = pmt::dict_ref(dict, d_tag_key, pmt::PMT_NIL); int len = pmt::length(tags); for (int i = 0; i < len; i++) { // get tag info from list pmt::pmt_t tup = pmt::vector_ref(tags, i); int tagval = pmt::to_long(pmt::tuple_ref(tup, 0)); pmt::pmt_t k = pmt::tuple_ref(tup, 1); pmt::pmt_t v = pmt::tuple_ref(tup, 2); // add the tag t[0].push_back(gr::tag_t()); t[0][t[0].size() - 1].offset = tagval; t[0][t[0].size() - 1].key = k; t[0][t[0].size() - 1].value = v; t[0][t[0].size() - 1].srcid = pmt::PMT_NIL; } } } len = pmt::length(samples); const gr_complex* in; if (pmt::is_c32vector(samples)) { in = (const gr_complex*)pmt::c32vector_elements(samples, len); } else { throw std::runtime_error("time_sink_c: unknown data type " "of samples; must be complex."); } // Plot if we're past the last update time if (gr::high_res_timer_now() - d_last_time > d_update_time) { d_last_time = gr::high_res_timer_now(); set_nsamps(len); volk_32fc_deinterleave_64f_x2(d_buffers[2 * d_nconnections + 0], d_buffers[2 * d_nconnections + 1], in, len); d_qApplication->postEvent(d_main_gui, new TimeUpdateEvent(d_buffers, len, t)); } } } /* namespace qtgui */ } /* namespace gr */