/* -*- c++ -*- */ /* * Copyright 2008-2012,2014 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "sink_c_impl.h" #include <gnuradio/io_signature.h> #include <gnuradio/prefs.h> #include <volk/volk.h> #include <cstring> namespace gr { namespace qtgui { namespace { constexpr uint64_t maxBufferSize = 32768; } sink_c::sptr sink_c::make(int fftsize, int wintype, double fc, double bw, const std::string& name, bool plotfreq, bool plotwaterfall, bool plottime, bool plotconst, QWidget* parent) { return gnuradio::make_block_sptr<sink_c_impl>(fftsize, wintype, fc, bw, name, plotfreq, plotwaterfall, plottime, plotconst, parent); } sink_c_impl::sink_c_impl(int fftsize, int wintype, double fc, double bw, const std::string& name, bool plotfreq, bool plotwaterfall, bool plottime, bool plotconst, QWidget* parent) : block("sink_c", io_signature::make(1, -1, sizeof(gr_complex)), io_signature::make(0, 0, 0)), d_fftsize(fftsize), d_wintype((fft::window::win_type)(wintype)), d_center_freq(fc), d_bandwidth(bw), d_name(name), d_port(pmt::mp("freq")), d_fft(std::make_unique<fft::fft_complex_fwd>(d_fftsize)), d_residbuf(d_fftsize), d_magbuf(d_fftsize), d_plotfreq(plotfreq), d_plotwaterfall(plotwaterfall), d_plottime(plottime), d_plotconst(plotconst), d_parent(parent), d_main_gui(maxBufferSize, d_fftsize, d_center_freq, -d_bandwidth, d_bandwidth) { // setup output message port to post frequency when display is // double-clicked message_port_register_out(d_port); message_port_register_in(d_port); set_msg_handler(d_port, [this](pmt::pmt_t msg) { this->handle_set_freq(msg); }); buildwindow(); initialize(); } sink_c_impl::~sink_c_impl() {} bool sink_c_impl::check_topology(int ninputs, int noutputs) { return ninputs == 1; } void sink_c_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required) { unsigned int ninputs = ninput_items_required.size(); for (unsigned int i = 0; i < ninputs; i++) { ninput_items_required[i] = std::min(d_fftsize, 8191); } } void sink_c_impl::initialize() { if (qApp != NULL) { d_qApplication = qApp; } else { #if QT_VERSION >= 0x040500 && QT_VERSION < 0x050000 std::string style = prefs::singleton()->get_string("qtgui", "style", "raster"); QApplication::setGraphicsSystem(QString(style.c_str())); #endif d_qApplication = new QApplication(d_argc, &d_argv); } // If a style sheet is set in the prefs file, enable it here. check_set_qss(d_qApplication); if (d_center_freq < 0) { throw std::runtime_error("sink_c_impl: Received bad center frequency."); } d_main_gui.setDisplayTitle(d_name); d_main_gui.setWindowType((int)d_wintype); set_fft_size(d_fftsize); d_main_gui.openSpectrumWindow( d_parent, d_plotfreq, d_plotwaterfall, d_plottime, d_plotconst); // initialize update time to 10 times a second set_update_time(0.5); d_last_update = gr::high_res_timer_now(); d_update_active = false; } void sink_c_impl::exec_() { d_qApplication->exec(); } QWidget* sink_c_impl::qwidget() { return d_main_gui.qwidget(); } void sink_c_impl::set_fft_size(const int fftsize) { if ((fftsize >= d_main_gui.MIN_FFT_SIZE) && (fftsize <= d_main_gui.MAX_FFT_SIZE)) { d_fftsize = fftsize; d_main_gui.setFFTSize(fftsize); } else { GR_LOG_INFO( d_logger, fmt::format("FFT size must be >= {} and <= {}.\nSo falling back to {}.", d_main_gui.MIN_FFT_SIZE, d_main_gui.MAX_FFT_SIZE, d_main_gui.DEFAULT_FFT_SIZE)); d_main_gui.setFFTSize(d_main_gui.DEFAULT_FFT_SIZE); } } int sink_c_impl::fft_size() const { return d_fftsize; } void sink_c_impl::set_frequency_range(const double centerfreq, const double bandwidth) { d_center_freq = centerfreq; d_bandwidth = bandwidth; d_main_gui.setFrequencyRange(d_center_freq, -d_bandwidth, d_bandwidth); } void sink_c_impl::set_fft_power_db(double min, double max) { d_main_gui.setFrequencyAxis(min, max); } void sink_c_impl::enable_rf_freq(bool en) { d_main_gui.enableRFFreq(en); } void sink_c_impl::set_update_time(double t) { d_update_time = t * gr::high_res_timer_tps(); d_main_gui.setUpdateTime(t); } void sink_c_impl::fft(float* data_out, const gr_complex* data_in, int size) { if (!d_window.empty()) { volk_32fc_32f_multiply_32fc(d_fft->get_inbuf(), data_in, &d_window.front(), size); } else { memcpy(d_fft->get_inbuf(), data_in, sizeof(gr_complex) * size); } d_fft->execute(); // compute the fft volk_32fc_s32f_x2_power_spectral_density_32f( data_out, d_fft->get_outbuf(), size, 1.0, size); } void sink_c_impl::windowreset() { fft::window::win_type newwintype; newwintype = (fft::window::win_type)d_main_gui.getWindowType(); if (d_wintype != newwintype) { d_wintype = newwintype; buildwindow(); } } void sink_c_impl::buildwindow() { d_window.clear(); if (d_wintype != 0) { d_window = filter::firdes::window(d_wintype, d_fftsize, 6.76); } } void sink_c_impl::fftresize() { int newfftsize = d_main_gui.getFFTSize(); if (newfftsize != d_fftsize) { // Resize residbuf and replace data d_residbuf.resize(newfftsize); d_magbuf.resize(newfftsize); // Set new fft size and reset buffer index // (throws away any currently held data, but who cares?) d_fftsize = newfftsize; d_index = 0; // Reset window to reflect new size buildwindow(); // Reset FFTW plan for new size d_fft = std::make_unique<fft::fft_complex_fwd>(d_fftsize); } } void sink_c_impl::check_clicked() { if (d_main_gui.checkClicked()) { double freq = d_main_gui.getClickedFreq(); message_port_pub(d_port, pmt::cons(d_port, pmt::from_double(freq))); } } void sink_c_impl::handle_set_freq(pmt::pmt_t msg) { if (pmt::is_pair(msg)) { pmt::pmt_t x = pmt::cdr(msg); if (pmt::is_real(x)) { d_center_freq = pmt::to_double(x); set_frequency_range(d_center_freq, d_bandwidth); } } } int sink_c_impl::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { int j = 0; const gr_complex* in = (const gr_complex*)input_items[0]; // Update the FFT size from the application fftresize(); windowreset(); check_clicked(); for (int i = 0; i < noutput_items; i += d_fftsize) { unsigned int datasize = noutput_items - i; unsigned int resid = d_fftsize - d_index; if (!d_update_active && (gr::high_res_timer_now() - d_last_update) < d_update_time) { consume_each(noutput_items); return noutput_items; } else { d_last_update = gr::high_res_timer_now(); d_update_active = true; } // If we have enough input for one full FFT, do it if (datasize >= resid) { const gr::high_res_timer_type currentTime = gr::high_res_timer_now(); // Fill up residbuf with d_fftsize number of items memcpy(d_residbuf.data() + d_index, &in[j], sizeof(gr_complex) * resid); d_index = 0; j += resid; fft(d_magbuf.data(), d_residbuf.data(), d_fftsize); d_main_gui.updateWindow(true, d_magbuf.data(), d_fftsize, NULL, 0, reinterpret_cast<float*>(d_residbuf.data()), d_fftsize, currentTime, true); d_update_active = false; } // Otherwise, copy what we received into the residbuf for next time else { memcpy(d_residbuf.data() + d_index, &in[j], sizeof(gr_complex) * datasize); d_index += datasize; j += datasize; } } consume_each(j); return j; } } /* namespace qtgui */ } /* namespace gr */