#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: from matplotlib import pyplot from matplotlib import pyplot as mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 10000000 # number of samples to use self._fs = 10000 # initial sampling rate self._decim = 20 # Decimation rate # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth self._taps = filter.firdes.low_pass_2(1, self._fs, 200, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = numpy.ceil(float(len(self._taps)) / float(self._decim)) print("Number of taps: ", len(self._taps)) print("Number of filters: ", self._decim) print("Taps per channel: ", tpc) # Build the input signal source # We create a list of freqs, and a sine wave is generated and added to the source # for each one of these frequencies. self.signals = list() self.add = blocks.add_cc() freqs = [10, 20, 2040] for i in range(len(freqs)): self.signals.append(analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freqs[i], 1)) self.connect(self.signals[i], (self.add,i)) self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct a PFB decimator filter self.pfb = filter.pfb.decimator_ccf(self._decim, self._taps, 0) # Construct a standard FIR decimating filter self.dec = filter.fir_filter_ccf(self._decim, self._taps) self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Create the sink for the decimated siganl self.snk = blocks.vector_sink_c() self.connect(self.pfb, self.snk) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print("Run time: %f" % (tend - tstart)) if 1: fig1 = pyplot.figure(1, figsize=(16,9)) fig2 = pyplot.figure(2, figsize=(16,9)) Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = numpy.blackman fs = tb._fs # Plot the input to the decimator d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) f_in = numpy.arange(-fs / 2.0, fs / 2.0, fs / float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0 / fs Tmax = len(d)*Ts t_in = numpy.arange(0, Tmax, Ts) x_in = numpy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b") p1_t = sp1_t.plot(t_in, x_in.imag, "r") sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1]) sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot the output of the decimator fs_o = tb._fs / tb._decim sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk.data()[Ns:Ns+Ne] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) f_o = numpy.arange(-fs_o / 2.0, fs_o / 2.0, fs_o / float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("PFB Decimated Signal", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_o = 1.0 / fs_o Tmax_o = len(d)*Ts_o x_o = numpy.array(d) t_o = numpy.arange(0, Tmax_o, Ts_o) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o.real, "b-o") p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pyplot.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass