#!/usr/bin/env python # # Copyright 2008,2010,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # from gnuradio import gr, gr_unittest, fft, blocks # Note: Octave code to verify these results: # primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, # 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311] # src_data = primes(1:2:end) + primes(2:2:end)*i # forward = fft(src_data(:)) # reverse = ifft(forward(:)) # windowed = fft(src_data(:).*hamming(32)) # reverse_window_shift = ifft(fftshift(forward.*hamming(32))) primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311) primes_transformed = ((4377 + 4516j), (-1706.1268310546875 + 1638.4256591796875j), (-915.2083740234375 + 660.69427490234375j), (-660.370361328125 + 381.59600830078125j), (-499.96044921875 + 238.41630554199219j), (-462.26748657226562 + 152.88948059082031j), (-377.98440551757812 + 77.5928955078125j), (-346.85821533203125 + 47.152004241943359j), (-295 + 20j), (-286.33609008789062 - 22.257017135620117j), (-271.52999877929688 - 33.081821441650391j), (-224.6358642578125 - 67.019538879394531j), (-244.24473571777344 - 91.524826049804688j), (-203.09068298339844 - 108.54627227783203j), (-198.45195007324219 - 115.90768432617188j), (-182.97744750976562 - 128.12318420410156j), (-167 - 180j), (-130.33688354492188 - 173.83778381347656j), (-141.19784545898438 - 190.28807067871094j), (-111.09677124023438 - 214.48896789550781j), (-70.039543151855469 - 242.41630554199219j), (-68.960540771484375 - 228.30015563964844j), (-53.049201965332031 - 291.47097778320312j), (-28.695289611816406 - 317.64553833007812j), (57 - 300j), (45.301143646240234 - 335.69509887695312j), (91.936195373535156 - 373.32437133789062j), (172.09465026855469 - 439.275146484375j), (242.24473571777344 - 504.47515869140625j), (387.81732177734375 - 666.6788330078125j), (689.48553466796875 - 918.2142333984375j), (1646.539306640625 - 1694.1956787109375j)) class test_fft(gr_unittest.TestCase): def setUp(self): self.tb = gr.top_block() self.fft_size = 32 def tearDown(self): pass def assert_fft_ok2(self, expected_result, result_data): expected_result = expected_result[:len(result_data)] self.assertComplexTuplesAlmostEqual2(expected_result, result_data, abs_eps=1e-9, rel_eps=4e-4) def test_forward(self): src_data = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)]) expected_result = primes_transformed src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) op = fft.fft_vcc(self.fft_size, True, [], False) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2v, op, v2s, dst) self.tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data) def test_reverse(self): src_data = tuple([x / self.fft_size for x in primes_transformed]) expected_result = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)]) src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) op = fft.fft_vcc(self.fft_size, False, [], False) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2v, op, v2s, dst) self.tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data) def test_multithreaded(self): # Same test as above, only use 2 threads src_data = tuple([x / self.fft_size for x in primes_transformed]) expected_result = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)]) nthreads = 2 src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) op = fft.fft_vcc(self.fft_size, False, [], False, nthreads) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2v, op, v2s, dst) self.tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data) def test_window(self): src_data = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)]) expected_result = ((2238.9174 + 2310.4750j), (-1603.7416 - 466.7420j), (116.7449 - 70.8553j), (-13.9157 + 19.0855j), (-4.8283 + 16.7025j), (-43.7425 + 16.9871j), (-16.1904 + 1.7494j), (-32.3797 + 6.9964j), (-13.5283 + 7.7721j), (-24.3276 - 7.5378j), (-29.2711 + 4.5709j), (-2.7124 - 6.6307j), (-33.5486 - 8.3485j), (-8.3016 - 9.9534j), (-18.8590 - 8.3501j), (-13.9092 - 1.1396j), (-17.7626 - 26.9281j), (0.0182 - 8.9000j), (-19.9143 - 14.1320j), (-10.3073 - 15.5759j), (3.5800 - 29.1835j), (-7.5263 - 1.5900j), (-3.0392 - 31.7445j), (-15.1355 - 33.6158j), (28.2345 - 11.4373j), (-6.0055 - 27.0418j), (5.2074 - 21.2431j), (23.1617 - 31.8610j), (13.6494 - 11.1982j), (14.7145 - 14.4113j), (-60.0053 + 114.7418j), (-440.1561 - 1632.9807j)) window = fft.window_hamming(ntaps=self.fft_size) src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) op = fft.fft_vcc(self.fft_size, True, window, False) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2v, op, v2s, dst) self.tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data) def test_reverse_window_shift(self): src_data = tuple([x / self.fft_size for x in primes_transformed]) expected_result = ((-74.8629 - 63.2502j), (-3.5446 - 2.0365j), (2.9231 + 1.6827j), (-2.7852 - 0.8613j), (2.4763 + 2.7881j), (-2.7457 - 3.2602j), (4.7748 + 2.4145j), (-2.8807 - 4.5313j), (5.9949 + 4.1976j), (-6.1095 - 6.0681j), (5.2248 + 5.7743j), (-6.0436 - 6.3773j), (9.7184 + 9.2482j), (-8.2791 - 8.6507j), (6.3273 + 6.1560j), (-12.2841 - 12.4692j), (10.5816 + 10.0241j), (-13.0312 - 11.9451j), (12.2983 + 13.3644j), (-13.0372 - 14.0795j), (14.4682 + 13.3079j), (-16.7673 - 16.7287j), (14.3946 + 11.5916j), (-16.8368 - 21.3156j), (20.4528 + 16.8499j), (-18.4075 - 18.2446j), (17.7507 + 19.2109j), (-21.5207 - 20.7159j), (22.2183 + 19.8012j), (-22.2144 - 20.0343j), (17.0359 + 17.6910j), (-91.8955 - 103.1093j)) window = fft.window_hamming(ntaps=self.fft_size) src = blocks.vector_source_c(src_data) s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) op = fft.fft_vcc(self.fft_size, False, window, True) v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size) dst = blocks.vector_sink_c() self.tb.connect(src, s2v, op, v2s, dst) self.tb.run() result_data = dst.data() self.assert_fft_ok2(expected_result, result_data) if __name__ == '__main__': gr_unittest.run(test_fft, "test_fft.xml")