#!/usr/bin/env python # # Copyright 2014 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blocks import fec_swig as fec import math class capillary_threaded_encoder(gr.hier_block2): def __init__(self, encoder_list_0, input_size=gr.sizeof_char, output_size=gr.sizeof_char): gr.hier_block2.__init__(self, "Capillary Threaded Encoder", gr.io_signature(1, 1, input_size), gr.io_signature(1, 1, output_size)) self.encoder_list_0 = encoder_list_0 check = math.log10(len(self.encoder_list_0)) / math.log10(2.0) if(abs(check - int(check)) > 0.0): gr.log.info("fec.capillary_threaded_encoder: number of encoders must be a power of 2.") raise AttributeError self.deinterleaves_0 = []; for i in range(int(math.log(len(encoder_list_0), 2))): for j in range(int(math.pow(2, i))): self.deinterleaves_0.append(blocks.deinterleave(input_size, fec.get_encoder_input_size(encoder_list_0[0]))) self.generic_encoders_0 = []; for i in range(len(encoder_list_0)): self.generic_encoders_0.append(fec.encoder(encoder_list_0[i], input_size, output_size)) self.interleaves_0 = []; for i in range(int(math.log(len(encoder_list_0), 2))): for j in range(int(math.pow(2, i))): self.interleaves_0.append(blocks.interleave(output_size, fec.get_encoder_output_size(encoder_list_0[0]))) rootcount = 0; branchcount = 1; for i in range(int(math.log(len(encoder_list_0), 2)) - 1): for j in range(int(math.pow(2, i))): self.connect((self.deinterleaves_0[rootcount], 0), (self.deinterleaves_0[branchcount], 0)) self.connect((self.deinterleaves_0[rootcount], 1), (self.deinterleaves_0[branchcount + 1], 0)) rootcount += 1; branchcount += 2; codercount = 0; for i in range(len(encoder_list_0)/2): self.connect((self.deinterleaves_0[rootcount], 0), (self.generic_encoders_0[codercount], 0)) self.connect((self.deinterleaves_0[rootcount], 1), (self.generic_encoders_0[codercount + 1], 0)) rootcount += 1; codercount += 2; rootcount = 0; branchcount = 1; for i in range(int(math.log(len(encoder_list_0), 2)) - 1): for j in range(int(math.pow(2, i))): self.connect((self.interleaves_0[branchcount], 0), (self.interleaves_0[rootcount], 0)) self.connect((self.interleaves_0[branchcount + 1], 0), (self.interleaves_0[rootcount], 1)) rootcount += 1; branchcount += 2; codercount = 0; for i in range(len(encoder_list_0)/2): self.connect((self.generic_encoders_0[codercount], 0), (self.interleaves_0[rootcount], 0)) self.connect((self.generic_encoders_0[codercount + 1], 0), (self.interleaves_0[rootcount], 1)) rootcount += 1; codercount += 2; if((len(self.encoder_list_0)) > 1): self.connect((self, 0), (self.deinterleaves_0[0], 0)) self.connect((self.interleaves_0[0], 0), (self, 0)) else: self.connect((self, 0), (self.generic_encoders_0[0], 0)) self.connect((self.generic_encoders_0[0], 0), (self, 0)) def get_encoder_list_0(self): return self.encoder_list_0 def set_encoder_list_0(self, encoder_list_0): self.encoder_list_0 = encoder_list_0