/* -*- c++ -*- */
/*
 * Copyright 2015 Free Software Foundation, Inc.
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "ldpc_G_matrix_impl.h"
#include <math.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <vector>

namespace gr {
namespace fec {
namespace code {

ldpc_G_matrix::sptr ldpc_G_matrix::make(const std::string filename)
{
    return ldpc_G_matrix::sptr(new ldpc_G_matrix_impl(filename));
}

ldpc_G_matrix_impl::ldpc_G_matrix_impl(const std::string filename) : fec_mtrx_impl()
{
    configure_default_loggers(d_logger, d_debug_logger, "ldpc_G_matrix");

    // Read the matrix from a file in alist format
    matrix_sptr x = read_matrix_from_file(filename);
    d_num_cols = x->size2;
    d_num_rows = x->size1;

    // Make an actual copy so we guarantee that we're not sharing
    // memory with another class that reads the same alist file.
    gsl_matrix* G = gsl_matrix_alloc(d_num_rows, d_num_cols);
    gsl_matrix_memcpy(G, (gsl_matrix*)(x.get()));

    unsigned int row_index, col_index;

    // First, check if we have a generator matrix G in systematic
    // form, G = [I P], where I is a k x k identity matrix and P
    // is the parity submatrix.

    // Length of codeword = # of columns of generator matrix
    d_n = d_num_cols;
    // Length of information word = # of rows of generator matrix
    d_k = d_num_rows;

    gsl_matrix* I_test = gsl_matrix_alloc(d_k, d_k);
    gsl_matrix* identity = gsl_matrix_alloc(d_k, d_k);
    gsl_matrix_set_identity(identity);

    for (row_index = 0; row_index < d_k; row_index++) {
        for (col_index = 0; col_index < d_k; col_index++) {
            int value = gsl_matrix_get(G, row_index, col_index);
            gsl_matrix_set(I_test, row_index, col_index, value);
        }
    }

    // Check if the identity matrix exists in the right spot.
    // int test_if_equal = gsl_matrix_equal(identity, I_test);
    gsl_matrix_sub(identity, I_test); // should be null set if equal
    double test_if_not_equal = gsl_matrix_max(identity);

    // Free memory
    gsl_matrix_free(identity);
    gsl_matrix_free(I_test);

    // if(!test_if_equal) {
    if (test_if_not_equal > 0) {
        GR_LOG_ERROR(d_logger,
                     "Error in ldpc_G_matrix_impl constructor. It appears "
                     "that the given alist file did not contain either a "
                     "valid parity check matrix of the form H = [P' I] or "
                     "a generator matrix of the form G = [I P].\n");
        throw std::runtime_error("ldpc_G_matrix: Bad matrix definition");
    }

    // Our G matrix is verified as correct, now convert it to the
    // parity check matrix.

    // Grab P matrix
    gsl_matrix* P = gsl_matrix_alloc(d_k, d_n - d_k);
    for (row_index = 0; row_index < d_k; row_index++) {
        for (col_index = 0; col_index < d_n - d_k; col_index++) {
            int value = gsl_matrix_get(G, row_index, col_index + d_k);
            gsl_matrix_set(P, row_index, col_index, value);
        }
    }

    // Calculate P transpose
    gsl_matrix* P_transpose = gsl_matrix_alloc(d_n - d_k, d_k);
    gsl_matrix_transpose_memcpy(P_transpose, P);

    // Set H matrix. H = [-P' I] but since we are doing mod 2,
    // -P = P, so H = [P' I]
    gsl_matrix* H_ptr = gsl_matrix_alloc(d_n - d_k, d_n);
    gsl_matrix_set_zero(H_ptr);
    for (row_index = 0; row_index < d_n - d_k; row_index++) {
        for (col_index = 0; col_index < d_k; col_index++) {
            int value = gsl_matrix_get(P_transpose, row_index, col_index);
            gsl_matrix_set(H_ptr, row_index, col_index, value);
        }
    }

    for (row_index = 0; row_index < (d_n - d_k); row_index++) {
        col_index = row_index + d_k;
        gsl_matrix_set(H_ptr, row_index, col_index, 1);
    }

    // Calculate G transpose (used for encoding)
    d_G_transp_ptr = gsl_matrix_alloc(d_n, d_k);
    gsl_matrix_transpose_memcpy(d_G_transp_ptr, G);

    d_H_sptr = matrix_sptr((matrix*)H_ptr);

    // Free memory
    gsl_matrix_free(P);
    gsl_matrix_free(P_transpose);
    gsl_matrix_free(G);
}


const gsl_matrix* ldpc_G_matrix_impl::G_transpose() const
{
    const gsl_matrix* G_trans_ptr = d_G_transp_ptr;
    return G_trans_ptr;
}

void ldpc_G_matrix_impl::encode(unsigned char* outbuffer,
                                const unsigned char* inbuffer) const
{

    unsigned int index, k = d_k, n = d_n;
    gsl_matrix* s = gsl_matrix_alloc(k, 1);
    for (index = 0; index < k; index++) {
        double value = static_cast<double>(inbuffer[index]);
        gsl_matrix_set(s, index, 0, value);
    }

    // Simple matrix multiplication to get codeword
    gsl_matrix* codeword = gsl_matrix_alloc(G_transpose()->size1, s->size2);
    mult_matrices_mod2(codeword, G_transpose(), s);

    // Output
    for (index = 0; index < n; index++) {
        outbuffer[index] = gsl_matrix_get(codeword, index, 0);
    }

    // Free memory
    gsl_matrix_free(s);
    gsl_matrix_free(codeword);
}


void ldpc_G_matrix_impl::decode(unsigned char* outbuffer,
                                const float* inbuffer,
                                unsigned int frame_size,
                                unsigned int max_iterations) const
{
    unsigned int index, n = d_n;
    gsl_matrix* x = gsl_matrix_alloc(n, 1);
    for (index = 0; index < n; index++) {
        double value = inbuffer[index] > 0 ? 1.0 : 0.0;
        gsl_matrix_set(x, index, 0, value);
    }

    // Initialize counter
    unsigned int count = 0;

    // Calculate syndrome
    gsl_matrix* syndrome = gsl_matrix_alloc(H()->size1, x->size2);
    mult_matrices_mod2(syndrome, H(), x);

    // Flag for finding a valid codeword
    bool found_word = false;

    // If the syndrome is all 0s, then codeword is valid and we
    // don't need to loop; we're done.
    if (gsl_matrix_isnull(syndrome)) {
        found_word = true;
    }

    // Loop until valid codeword is found, or max number of
    // iterations is reached, whichever comes first
    while ((count < max_iterations) && !found_word) {
        // For each of the n bits in the codeword, determine how
        // many of the unsatisfied parity checks involve that bit.
        // To do this, first find the nonzero entries in the
        // syndrome. The entry numbers correspond to the rows of
        // interest in H.
        std::vector<int> rows_of_interest_in_H;
        for (index = 0; index < (*syndrome).size1; index++) {
            if (gsl_matrix_get(syndrome, index, 0)) {
                rows_of_interest_in_H.push_back(index);
            }
        }

        // Second, for each bit, determine how many of the
        // unsatisfied parity checks involve this bit and store
        // the count.
        unsigned int i, col_num, n = d_n;
        std::vector<int> counts(n, 0);
        for (i = 0; i < rows_of_interest_in_H.size(); i++) {
            unsigned int row_num = rows_of_interest_in_H[i];
            for (col_num = 0; col_num < n; col_num++) {
                double value = gsl_matrix_get(H(), row_num, col_num);
                if (value > 0) {
                    counts[col_num] = counts[col_num] + 1;
                }
            }
        }

        // Next, determine which bit(s) is associated with the most
        // unsatisfied parity checks, and flip it/them.
        int max = 0;
        for (index = 0; index < n; index++) {
            if (counts[index] > max) {
                max = counts[index];
            }
        }

        for (index = 0; index < n; index++) {
            if (counts[index] == max) {
                unsigned int value = gsl_matrix_get(x, index, 0);
                unsigned int new_value = value ^ 1;
                gsl_matrix_set(x, index, 0, new_value);
            }
        }

        // Check the syndrome; see if valid codeword has been found
        mult_matrices_mod2(syndrome, H(), x);
        if (gsl_matrix_isnull(syndrome)) {
            found_word = true;
            break;
        }
        count++;
    }

    // Extract the info word and assign to output. This will
    // happen regardless of if a valid codeword was found.
    if (parity_bits_come_last()) {
        for (index = 0; index < frame_size; index++) {
            outbuffer[index] = gsl_matrix_get(x, index, 0);
        }
    } else {
        for (index = 0; index < frame_size; index++) {
            unsigned int i = index + n - frame_size;
            int value = gsl_matrix_get(x, i, 0);
            outbuffer[index] = value;
        }
    }

    // Free memory
    gsl_matrix_free(syndrome);
    gsl_matrix_free(x);
}

gr::fec::code::fec_mtrx_sptr ldpc_G_matrix_impl::get_base_sptr()
{
    return shared_from_this();
}

ldpc_G_matrix_impl::~ldpc_G_matrix_impl()
{
    // Call the gsl_matrix_free function to free memory.
    gsl_matrix_free(d_G_transp_ptr);
    gsl_matrix_free(d_H_obj);
}
} /* namespace code */
} /* namespace fec */
} /* namespace gr */