/* -*- c++ -*- */
/*
 * Copyright 2011-2012 Free Software Foundation, Inc.
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif


#include <fcd_source_c_impl.h>
#include <fcd.h>
#include <fcdhidcmd.h> // needed for extended API
#include <gr_io_signature.h>
#include <gr_float_to_complex.h>
#include <gruel/attributes.h>

//#include <iostream>
//using namespace std;

/*
 * Create a new instance of fcd_source_c_impl and return
 * an upcasted boost shared_ptr. This is effectively the public constructor.
 */
fcd_source_c_sptr fcd_make_source_c(const std::string device_name)
{
    return gnuradio::get_initial_sptr(new fcd_source_c_impl(device_name));
}

static const int MIN_IN = 0;  /*!< Mininum number of input streams. */
static const int MAX_IN = 0;  /*!< Maximum number of input streams. */
static const int MIN_OUT = 1; /*!< Minimum number of output streams. */
static const int MAX_OUT = 1; /*!< Maximum number of output streams. */

fcd_source_c_impl::fcd_source_c_impl(const std::string device_name)
  : gr_hier_block2 ("fcd_source_c",
		    gr_make_io_signature (MIN_IN, MAX_IN, sizeof (gr_complex)),
		    gr_make_io_signature (MIN_OUT, MAX_OUT, sizeof (gr_complex))),
    d_freq_corr(-120),
    d_freq_req(0)
{
  gr_float_to_complex_sptr f2c;

  /* Audio source; sample rate fixed at 96kHz */
  fcd = audio_make_source(96000, device_name, true);

  /* block to convert stereo audio to a complex stream */
  f2c = gr_make_float_to_complex(1);

  connect(fcd, 0, f2c, 0);
  connect(fcd, 1, f2c, 1);
  connect(f2c, 0, self(), 0);
}

// Set frequency with Hz resolution
void fcd_source_c_impl::set_freq(int freq)
{
  FCD_MODE_ENUM __GR_ATTR_UNUSED fme;
  double f = (double)freq;

  /* valid range 50 MHz - 2.0 GHz */
  if ((freq < 50000000) || (freq > 2000000000)) {
    return;
  }

  d_freq_req = freq;
  f *= 1.0 + d_freq_corr/1000000.0;

  fme = fcdAppSetFreq((int)f);
  /* TODO: check fme */
}

// Set frequency with Hz resolution (type float)
void fcd_source_c_impl::set_freq(float freq)
{
  FCD_MODE_ENUM __GR_ATTR_UNUSED fme;
  double f = (double)freq;

  /* valid range 50 MHz - 2.0 GHz */
  if ((freq < 50.0e6) || (freq > 2.0e9)) {
    return;
  }

  d_freq_req = (int)freq;
  f *= 1.0 + d_freq_corr/1000000.0;

  fme = fcdAppSetFreq((int)f);
  /* TODO: check fme */
}


// Set frequency with kHz resolution.
void fcd_source_c_impl::set_freq_khz(int freq)
{
  FCD_MODE_ENUM __GR_ATTR_UNUSED fme;
  double f = freq*1000.0;

  /* valid range 50 MHz - 2.0 GHz */
  if ((freq < 50000) || (freq > 2000000)) {
    return;
  }

  d_freq_req = freq*1000;
  f *= 1.0 + d_freq_corr/1000000.0;

  fme = fcdAppSetFreqkHz((int)(f/1000.0));
  /* TODO: check fme */
}


// Set LNA gain
void fcd_source_c_impl::set_lna_gain(float gain)
{
  FCD_MODE_ENUM __GR_ATTR_UNUSED fme;
  unsigned char g;

  /* convert to nearest discrete value */
  if (gain > 27.5) {
    g = 14;              // 30.0 dB
  }
  else if (gain > 22.5) {
    g = 13;              // 25.0 dB
  }
  else if (gain > 18.75) {
    g = 12;              // 20.0 dB
  }
  else if (gain > 16.25) {
    g = 11;              // 17.5 dB
  }
  else if (gain > 13.75) {
    g = 10;              // 15.0 dB
  }
  else if (gain > 11.25) {
    g = 9;               // 12.5 dB
  }
  else if (gain > 8.75) {
    g = 8;               // 10.0 dB
  }
  else if (gain > 6.25) {
    g = 7;               // 7.5 dB
  }
  else if (gain > 3.75) {
    g = 6;               // 5.0 dB
  }
  else if (gain > 1.25) {
    g = 5;               // 2.5 dB
  }
  else if (gain > -1.25) {
    g = 4;               // 0.0 dB
  }
  else if (gain > -3.75) {
    g = 1;               // -2.5 dB
  }
  else {
    g = 0;               // -5.0 dB
  }

  fme = fcdAppSetParam(FCD_CMD_APP_SET_LNA_GAIN, &g, 1);
  /* TODO: check fme */
}

// Set mixer gain
void fcd_source_c_impl::set_mixer_gain(float gain)
{
    __GR_ATTR_UNUSED FCD_MODE_ENUM fme;
    unsigned char g;

    if ( gain > 4.0 ) {
        g = TMGE_P12_0DB;
    } else {
        g = TMGE_P4_0DB;
    }

    fme = fcdAppSetParam(FCD_CMD_APP_SET_MIXER_GAIN, &g, 1);
    /* TODO: check fme */
}

// Set new frequency correction
void fcd_source_c_impl::set_freq_corr(int ppm)
{
  d_freq_corr = ppm;
  // re-tune with new correction value
  set_freq(d_freq_req);
}

// Set DC offset correction.
void fcd_source_c_impl::set_dc_corr(double _dci, double _dcq)
{
  union {
    unsigned char auc[4];
    struct {
      signed short dci;  // equivalent of qint16 which should be 16 bit everywhere
      signed short dcq;
    };
  } dcinfo;

  if ((_dci < -1.0) || (_dci > 1.0) || (_dcq < -1.0) || (_dcq > 1.0))
    return;

  dcinfo.dci = static_cast<signed short>(_dci*32768.0);
  dcinfo.dcq = static_cast<signed short>(_dcq*32768.0);

  fcdAppSetParam(FCD_CMD_APP_SET_DC_CORR, dcinfo.auc, 4);
}

// Set IQ phase and gain balance.
void fcd_source_c_impl::set_iq_corr(double _gain, double _phase)
{
  union {
    unsigned char auc[4];
    struct {
      signed short phase;
      signed short gain;
    };
  } iqinfo;

  if ((_gain < -1.0) || (_gain > 1.0) || (_phase < -1.0) || (_phase > 1.0))
    return;

  iqinfo.phase = static_cast<signed short>(_phase*32768.0);
  iqinfo.gain = static_cast<signed short>(_gain*32768.0);

  fcdAppSetParam(FCD_CMD_APP_SET_IQ_CORR, iqinfo.auc, 4);
}