/* -*- c++ -*- */ /* * Copyright 2015,2016 Free Software Foundation, Inc. * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "dvbt_map_impl.h" #include <gnuradio/io_signature.h> #include <cmath> #include <complex> namespace gr { namespace dtv { dvbt_map::sptr dvbt_map::make(int nsize, dvb_constellation_t constellation, dvbt_hierarchy_t hierarchy, dvbt_transmission_mode_t transmission, float gain) { return gnuradio::make_block_sptr<dvbt_map_impl>( nsize, constellation, hierarchy, transmission, gain); } /* * The private constructor */ dvbt_map_impl::dvbt_map_impl(int nsize, dvb_constellation_t constellation, dvbt_hierarchy_t hierarchy, dvbt_transmission_mode_t transmission, float gain) : block("dvbt_map", io_signature::make(1, 1, sizeof(unsigned char) * nsize), io_signature::make(1, 1, sizeof(gr_complex) * nsize)), config(constellation, hierarchy, gr::dtv::C1_2, gr::dtv::C1_2, gr::dtv::GI_1_32, transmission), d_nsize(nsize), d_constellation_size(config.d_constellation_size), d_step(config.d_step), d_alpha(config.d_alpha), d_gain(gain * config.d_norm), d_constellation_points(d_constellation_size) { make_constellation_points(d_constellation_size, d_step, d_alpha); } /* * Our virtual destructor. */ dvbt_map_impl::~dvbt_map_impl() {} unsigned int dvbt_map_impl::bin_to_gray(unsigned int val) { return (val >> 1) ^ val; } void dvbt_map_impl::make_constellation_points(int size, int step, int alpha) { // The symmetry of the constellation is used to calculate // 16-QAM from QPSK and 64-QAM form 16-QAM int bits_per_axis = log2(size) / 2; int steps_per_axis = sqrt(size) / 2 - 1; for (int i = 0; i < size; i++) { // This is the quadrant made of the first two bits starting from MSB int q = i >> (2 * (bits_per_axis - 1)) & 3; // Sign for correctly calculate I and Q in each quadrant int sign0 = (q >> 1) ? -1 : 1; int sign1 = (q & 1) ? -1 : 1; int x = (i >> (bits_per_axis - 1)) & ((1 << (bits_per_axis - 1)) - 1); int y = i & ((1 << (bits_per_axis - 1)) - 1); int xval = alpha + (steps_per_axis - x) * step; int yval = alpha + (steps_per_axis - y) * step; int val = (bin_to_gray(x) << (bits_per_axis - 1)) + bin_to_gray(y); // ETSI EN 300 744 Clause 4.3.5 // Actually the constellation is gray coded // but the bits on each axis are not taken in consecutive order // So we need to convert from b0b2b4b1b3b5->b0b1b2b3b4b5(QAM64) x = 0; y = 0; for (int j = 0; j < (bits_per_axis - 1); j++) { x += ((val >> (1 + 2 * j)) & 1) << j; y += ((val >> (2 * j)) & 1) << j; } val = (q << 2 * (bits_per_axis - 1)) + (x << (bits_per_axis - 1)) + y; // Keep corresponding symbol bits->complex symbol in one vector // Normalize the signal using gain d_constellation_points[val] = d_gain * gr_complex(sign0 * xval, sign1 * yval); } } gr_complex dvbt_map_impl::find_constellation_point(int val) { return d_constellation_points[val]; } void dvbt_map_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required) { ninput_items_required[0] = noutput_items; } int dvbt_map_impl::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { const unsigned char* in = (const unsigned char*)input_items[0]; gr_complex* out = (gr_complex*)output_items[0]; for (int i = 0; i < (noutput_items * d_nsize); i++) { out[i] = find_constellation_point(in[i]); } // Tell runtime system how many input items we consumed on // each input stream. consume_each(noutput_items); // Tell runtime system how many output items we produced. return noutput_items; } } /* namespace dtv */ } /* namespace gr */