/* -*- c++ -*- */ /* * Copyright 2015 Free Software Foundation, Inc. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gnuradio/io_signature.h> #include "dvbt_inner_coder_impl.h" #include <stdio.h> #include <assert.h> namespace gr { namespace dtv { void dvbt_inner_coder_impl::generate_codeword(unsigned char in, int &x, int &y) { //insert input bit d_reg |= ((in & 0x1) << 7); d_reg = d_reg >> 1; // TODO - do this with polynoms and bitcnt //generate output G1=171(OCT) x = ((d_reg >> 6) ^ (d_reg >> 5) ^ (d_reg >> 4) ^ \ (d_reg >> 3) ^ d_reg) & 0x1; //generate output G2=133(OCT) y = ((d_reg >> 6) ^ (d_reg >> 4) ^ (d_reg >> 3) ^ \ (d_reg >> 1) ^ d_reg) & 0x1; } //TODO - do this based on puncturing matrix /* * Input e.g rate 2/3: * 000000x0x1 * Output e.g. rate 2/3 * 00000c0c1c2 */ void dvbt_inner_coder_impl::generate_punctured_code(dvb_code_rate_t coderate, unsigned char * in, unsigned char * out) { int x, y; switch(coderate) { //X1Y1 case C1_2: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; break; //X1Y1Y2 case C2_3: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; generate_codeword(in[1], x, y); out[2] = y; break; //X1Y1Y2X3 case C3_4: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; generate_codeword(in[1], x, y); out[2] = y; generate_codeword(in[2], x, y); out[3] = x; break; //X1Y1Y2X3Y4X5 case C5_6: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; generate_codeword(in[1], x, y); out[2] = y; generate_codeword(in[2], x, y); out[3] = x; generate_codeword(in[3], x, y); out[4] = y; generate_codeword(in[4], x, y); out[5] = x; break; //X1Y1Y2X3Y4X5Y6X7 case C7_8: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; generate_codeword(in[1], x, y); out[2] = y; generate_codeword(in[2], x, y); out[3] = y; generate_codeword(in[3], x, y); out[4] = y; generate_codeword(in[4], x, y); out[5] = x; generate_codeword(in[5], x, y); out[6] = y; generate_codeword(in[6], x, y); out[7] = x; break; default: generate_codeword(in[0], x, y); out[0] = x; out[1] = y; break; } } dvbt_inner_coder::sptr dvbt_inner_coder::make(int ninput, int noutput, dvb_constellation_t constellation, \ dvbt_hierarchy_t hierarchy, dvb_code_rate_t coderate) { return gnuradio::get_initial_sptr (new dvbt_inner_coder_impl(ninput, noutput, constellation, hierarchy, coderate)); } /* * The private constructor */ dvbt_inner_coder_impl::dvbt_inner_coder_impl(int ninput, int noutput, dvb_constellation_t constellation, \ dvbt_hierarchy_t hierarchy, dvb_code_rate_t coderate) : block("dvbt_inner_coder", io_signature::make(1, 1, sizeof (unsigned char)), io_signature::make(1, 1, sizeof (unsigned char) * noutput)), config(constellation, hierarchy, coderate, coderate), d_ninput(ninput), d_noutput(noutput), d_reg(0), d_bitcount(0) { //Determine k - input of encoder d_k = config.d_cr_k; //Determine n - output of encoder d_n = config.d_cr_n; //Determine m - constellation symbol size d_m = config.d_m; // In order to accomodate all constalations (m=2,4,6) // and rates (1/2, 2/3, 3/4, 5/6, 7/8) // We need the following things to happen: // - output item size multiple of 1512bytes // - noutput_items multiple of 4 // - in block size 4*(k*m/8) // - out block size 4*n // // Rate calculation follows: // We process km input bits(km/8 Bytes) // We output nm bits // We output one byte for a symbol of m bits // The out/in rate in bytes is: 8n/km (Bytes) assert(d_noutput % 1512 == 0); // Set output items multiple of 4 set_output_multiple(4); // Set relative rate out/in assert((d_noutput * d_k * d_m) % (d_ninput * 8 * d_n) == 0); set_relative_rate((float)(d_ninput * 8 * d_n) / (float)d_noutput * d_k * d_m); // calculate in and out block sizes d_in_bs = (d_k * d_m) / 2; d_out_bs = 4 * d_n; // allocate bit buffers d_in_buff = new unsigned char[8 * d_in_bs]; if (d_in_buff == NULL) { std::cout << "Cannot allocate memory for d_in_buff" << std::endl; exit(1); } d_out_buff = new unsigned char[8 * d_in_bs * d_n / d_k]; if (d_out_buff == NULL) { std::cout << "Cannot allocate memory for d_out_buff" << std::endl; delete [] d_in_buff; exit(1); } } /* * Our virtual destructor. */ dvbt_inner_coder_impl::~dvbt_inner_coder_impl() { delete [] d_out_buff; delete [] d_in_buff; } void dvbt_inner_coder_impl::forecast (int noutput_items, gr_vector_int &ninput_items_required) { int input_required = noutput_items * d_noutput * d_k * d_m / (d_ninput * 8 * d_n); unsigned ninputs = ninput_items_required.size(); for (unsigned int i = 0; i < ninputs; i++) { ninput_items_required[i] = input_required; } } int dvbt_inner_coder_impl::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const unsigned char *in = (const unsigned char *) input_items[0]; unsigned char *out = (unsigned char *) output_items[0]; for (int k = 0; k < (noutput_items * d_noutput / d_out_bs); k++) { // Unpack input to bits for (int i = 0; i < d_in_bs; i++) { for (int j = 0; j < 8; j++) { d_in_buff[8*i + j] = (in[k*d_in_bs + i] >> (7 - j)) & 1; } } // Encode the data for (int in_bit = 0, out_bit = 0; in_bit < (8 * d_in_bs); in_bit += d_k, out_bit += d_n) { generate_punctured_code(config.d_code_rate_HP, &d_in_buff[in_bit], &d_out_buff[out_bit]); } // Pack d_m bit in one output byte for (int i = 0; i < d_out_bs; i++) { unsigned char c = 0; for (int j = 0; j < d_m; j++) { c |= d_out_buff[d_m*i + j] << (d_m - 1 - j); } out[k*d_out_bs + i] = c; } } // Tell runtime system how many input items we consumed on // each input stream. consume_each(noutput_items * d_noutput * d_k * d_m / (d_ninput * 8 * d_n)); // Tell runtime system how many output items we produced. return noutput_items; } } /* namespace dtv */ } /* namespace gr */