/* -*- c++ -*- */
/*
 * Copyright 2015,2016 Free Software Foundation, Inc.
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "dvbt_demap_impl.h"
#include <gnuradio/io_signature.h>
#include <volk/volk.h>

namespace gr {
namespace dtv {

dvbt_demap::sptr dvbt_demap::make(int nsize,
                                  dvb_constellation_t constellation,
                                  dvbt_hierarchy_t hierarchy,
                                  dvbt_transmission_mode_t transmission,
                                  float gain)
{
    return gnuradio::get_initial_sptr(
        new dvbt_demap_impl(nsize, constellation, hierarchy, transmission, gain));
}

/*
 * The private constructor
 */
dvbt_demap_impl::dvbt_demap_impl(int nsize,
                                 dvb_constellation_t constellation,
                                 dvbt_hierarchy_t hierarchy,
                                 dvbt_transmission_mode_t transmission,
                                 float gain)
    : block("dvbt_demap",
            io_signature::make(1, 1, sizeof(gr_complex) * nsize),
            io_signature::make(1, 1, sizeof(unsigned char) * nsize)),
      config(constellation,
             hierarchy,
             gr::dtv::C1_2,
             gr::dtv::C1_2,
             gr::dtv::GI_1_32,
             transmission),
      d_nsize(nsize),
      d_constellation_size(0),
      d_step(0),
      d_alpha(0),
      d_gain(0.0)
{
    // Get parameters from config object
    d_constellation_size = config.d_constellation_size;
    d_transmission_mode = config.d_transmission_mode;
    d_step = config.d_step;
    d_alpha = config.d_alpha;
    d_gain = gain * config.d_norm;

    d_constellation_points = (gr_complex*)volk_malloc(
        sizeof(gr_complex) * d_constellation_size, volk_get_alignment());
    if (d_constellation_points == NULL) {
        GR_LOG_FATAL(d_logger,
                     "DVB-T Demap, cannot allocate memory for d_constellation_points.");
        throw std::bad_alloc();
    }

    d_sq_dist =
        (float*)volk_malloc(sizeof(float) * d_constellation_size, volk_get_alignment());
    if (d_sq_dist == NULL) {
        GR_LOG_FATAL(d_logger, "DVB-T Demap, cannot allocate memory for d_sq_dist.");
        volk_free(d_constellation_points);
        throw std::bad_alloc();
    }

    make_constellation_points(d_constellation_size, d_step, d_alpha);
}

/*
 * Our virtual destructor.
 */
dvbt_demap_impl::~dvbt_demap_impl()
{
    volk_free(d_sq_dist);
    volk_free(d_constellation_points);
}

void dvbt_demap_impl::make_constellation_points(int size, int step, int alpha)
{
    // The symmetry of the constellation is used to calculate
    // 16QAM from QPSK and 64QAM from 16QAM

    int bits_per_axis = log2(size) / 2;
    int steps_per_axis = sqrt(size) / 2 - 1;

    for (int i = 0; i < size; i++) {
        // This is the quadrant made of the first two bits starting from MSB
        int q = i >> (2 * (bits_per_axis - 1)) & 3;
        // Sign for correct calculation of I and Q in each quadrant
        int sign0 = (q >> 1) ? -1 : 1;
        int sign1 = (q & 1) ? -1 : 1;

        int x = (i >> (bits_per_axis - 1)) & ((1 << (bits_per_axis - 1)) - 1);
        int y = i & ((1 << (bits_per_axis - 1)) - 1);

        int xval = alpha + (steps_per_axis - x) * step;
        int yval = alpha + (steps_per_axis - y) * step;

        int val = (bin_to_gray(x) << (bits_per_axis - 1)) + bin_to_gray(y);

        // ETSI EN 300 744 Clause 4.3.5
        // Actually the constellation is gray coded
        // but the bits on each axis are not taken in consecutive order
        // So we need to convert from b0b2b4b1b3b5->b0b1b2b3b4b5(64QAM)

        x = 0;
        y = 0;

        for (int j = 0; j < (bits_per_axis - 1); j++) {
            x += ((val >> (1 + 2 * j)) & 1) << j;
            y += ((val >> (2 * j)) & 1) << j;
        }

        val = (q << 2 * (bits_per_axis - 1)) + (x << (bits_per_axis - 1)) + y;

        // Keep corresponding symbol bits->complex symbol in one vector
        // Normalize the signal using gain
        d_constellation_points[val] = d_gain * gr_complex(sign0 * xval, sign1 * yval);
    }
}

int dvbt_demap_impl::find_constellation_value(gr_complex val)
{
    float min_dist = std::norm(val - d_constellation_points[0]);
    int min_index = 0;

    volk_32fc_x2_square_dist_32f(
        &d_sq_dist[0], &val, &d_constellation_points[0], d_constellation_size);

    for (int i = 0; i < d_constellation_size; i++) {
        if (d_sq_dist[i] < min_dist) {
            min_dist = d_sq_dist[i];
            min_index = i;
        }
    }

    // return d_constellation_bits[min_index];
    return min_index;
}

int dvbt_demap_impl::bin_to_gray(int val) { return (val >> 1) ^ val; }

void dvbt_demap_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required)
{
    ninput_items_required[0] = noutput_items;
}

int dvbt_demap_impl::general_work(int noutput_items,
                                  gr_vector_int& ninput_items,
                                  gr_vector_const_void_star& input_items,
                                  gr_vector_void_star& output_items)
{
    const gr_complex* in = (const gr_complex*)input_items[0];
    unsigned char* out = (unsigned char*)output_items[0];

    // TODO - use DFE (Decision Feedback Equalizer)

    for (int i = 0; i < (noutput_items * d_nsize); i++) {
        out[i] = find_constellation_value(in[i]);
    }

    consume_each(noutput_items);

    // Tell runtime system how many output items we produced.
    return noutput_items;
}

} /* namespace dtv */
} /* namespace gr */