#!/usr/bin/env python
# Copyright 2012-2014 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

from gnuradio import gr, gr_unittest, digital, blocks
import pmt

class qa_digital_carrier_allocator_cvc (gr_unittest.TestCase):

    def setUp (self):
        self.tb = gr.top_block ()
        self.tsb_key = "ts_last"

    def tearDown (self):
        self.tb = None

    def test_001_t (self):
        """
        pretty simple (the carrier allocation here is not a practical OFDM configuration!)
        """
        fft_len = 6
        tx_symbols = (1, 2, 3)
        #             ^ this gets mapped to the DC carrier because occupied_carriers[0][0] == 0
        pilot_symbols = ((1j,),)
        occupied_carriers = ((0, 1, 2),)
        pilot_carriers = ((3,),)
        sync_word = (range(fft_len),)
        expected_result = tuple(sync_word[0] + [1j, 0, 0, 1, 2, 3])
        #                                                 ^ DC carrier
        src = blocks.vector_source_c(tx_symbols, False, 1)
        alloc = digital.ofdm_carrier_allocator_cvc(fft_len,
                       occupied_carriers,
                       pilot_carriers,
                       pilot_symbols, sync_word,
                       self.tsb_key)
        sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
        self.tb.connect(
                src,
                blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key),
                alloc,
                sink
        )
        self.tb.run()
        self.assertEqual(sink.data()[0], expected_result)

    def test_001_t2 (self):
        """
        pretty simple (same as before, but odd fft len)
        """
        fft_len = 5
        tx_symbols = (1, 2, 3)
        #             ^ this gets mapped to the DC carrier because occupied_carriers[0][0] == 0
        occupied_carriers = ((0, 1, 2),)
        pilot_carriers = ((-2,),)
        pilot_symbols = ((1j,),)
        expected_result = (1j, 0, 1, 2, 3)
        #                         ^ DC carrier
        src = blocks.vector_source_c(tx_symbols, False, 1)
        alloc = digital.ofdm_carrier_allocator_cvc(
                fft_len,
                occupied_carriers,
                pilot_carriers,
                pilot_symbols, (),
                self.tsb_key
        )
        sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
        self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key), alloc, sink)
        self.tb.run ()
        self.assertEqual(sink.data()[0], expected_result)

    def test_002_t (self):
        """
        same, but using negative carrier indices
        """
        fft_len = 6
        tx_symbols = (1, 2, 3)
        pilot_symbols = ((1j,),)
        occupied_carriers = ((-1, 1, 2),)
        pilot_carriers = ((3,),)
        expected_result = (1j, 0, 1, 0, 2, 3)
        src = blocks.vector_source_c(tx_symbols, False, 1)
        alloc = digital.ofdm_carrier_allocator_cvc(fft_len,
                       occupied_carriers,
                       pilot_carriers,
                       pilot_symbols, (),
                       self.tsb_key)
        sink = blocks.tsb_vector_sink_c(fft_len)
        self.tb.connect(
                src,
                blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key),
                alloc,
                sink
        )
        self.tb.run ()
        self.assertEqual(sink.data()[0], expected_result)

    def test_002_t (self):
        """
        once again, but this time add a sync word
        """
        fft_len = 6
        sync_word = (0,) * fft_len
        tx_symbols = (1, 2, 3, 4, 5, 6)
        pilot_symbols = ((1j,),)
        occupied_carriers = ((-1, 1, 2),)
        pilot_carriers = ((3,),)
        expected_result = sync_word + (1j, 0, 1, 0, 2, 3) + (1j, 0, 4, 0, 5, 6)
        special_tag1 = gr.tag_t()
        special_tag1.offset = 0
        special_tag1.key = pmt.string_to_symbol("spam")
        special_tag1.value = pmt.to_pmt(23)
        special_tag2 = gr.tag_t()
        special_tag2.offset = 4
        special_tag2.key = pmt.string_to_symbol("eggs")
        special_tag2.value = pmt.to_pmt(42)
        src = blocks.vector_source_c(
            tx_symbols, False, 1,
            (special_tag1, special_tag2)
        )
        alloc = digital.ofdm_carrier_allocator_cvc(
            fft_len,
            occupied_carriers,
            pilot_carriers,
            pilot_symbols,
            sync_words=(sync_word,),
            len_tag_key=self.tsb_key
        )
        sink = blocks.tsb_vector_sink_c(fft_len)
        self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key), alloc, sink)
        self.tb.run ()
        self.assertEqual(sink.data()[0], expected_result)
        tags = [gr.tag_to_python(x) for x in sink.tags()]
        tags = sorted([(x.offset, x.key, x.value) for x in tags])
        tags_expected = [
                (0, 'spam', 23),
                (2, 'eggs', 42),
        ]
        self.assertEqual(tags, tags_expected)

    def test_003_t (self):
        """
        more advanced:
        - 6 symbols per carrier
        - 2 pilots per carrier
        - have enough data for nearly 3 OFDM symbols
        - send that twice
        - add some random tags
        - don't shift
        """
        tx_symbols = range(1, 16); # 15 symbols
        pilot_symbols = ((1j, 2j), (3j, 4j))
        occupied_carriers = ((1, 3, 4, 11, 12, 14), (1, 2, 4, 11, 13, 14),)
        pilot_carriers = ((2, 13), (3, 12))
        expected_result = (0, 1,  1j,  2,  3, 0, 0, 0, 0, 0, 0, 4,  5,  2j, 6,  0,
                           0, 7,  8,  3j,  9, 0, 0, 0, 0, 0, 0, 10, 4j, 11, 12, 0,
                           0, 13, 1j, 14, 15, 0, 0, 0, 0, 0, 0, 0,  0,  2j, 0,  0)
        fft_len = 16
        testtag1 = gr.tag_t()
        testtag1.offset = 0
        testtag1.key = pmt.string_to_symbol('tag1')
        testtag1.value = pmt.from_long(0)
        testtag2 = gr.tag_t()
        testtag2.offset = 7 # On the 2nd OFDM symbol
        testtag2.key = pmt.string_to_symbol('tag2')
        testtag2.value = pmt.from_long(0)
        testtag3 = gr.tag_t()
        testtag3.offset = len(tx_symbols)+1 # First OFDM symbol of packet 2
        testtag3.key = pmt.string_to_symbol('tag3')
        testtag3.value = pmt.from_long(0)
        testtag4 = gr.tag_t()
        testtag4.offset = 2*len(tx_symbols)-1 # Last OFDM symbol of packet 2
        testtag4.key = pmt.string_to_symbol('tag4')
        testtag4.value = pmt.from_long(0)
        src = blocks.vector_source_c(tx_symbols * 2, False, 1, (testtag1, testtag2, testtag3, testtag4))
        alloc = digital.ofdm_carrier_allocator_cvc(fft_len,
                       occupied_carriers,
                       pilot_carriers,
                       pilot_symbols, (),
                       self.tsb_key,
                       False)
        sink = blocks.tsb_vector_sink_c(fft_len)
        self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key), alloc, sink)
        self.tb.run ()
        self.assertEqual(sink.data()[0], expected_result)
        tags_found = {'tag1': False, 'tag2': False, 'tag3': False, 'tag4': False}
        correct_offsets = {'tag1': 0, 'tag2': 1, 'tag3': 3, 'tag4': 5}
        for tag in sink.tags():
            key = pmt.symbol_to_string(tag.key)
            if key in tags_found.keys():
                tags_found[key] = True
                self.assertEqual(correct_offsets[key], tag.offset)
        self.assertTrue(all(tags_found.values()))


if __name__ == '__main__':
    gr_unittest.run(qa_digital_carrier_allocator_cvc, "qa_digital_carrier_allocator_cvc.xml")