#!/usr/bin/env python # # Copyright 2011,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest import digital_swig as digital import filter_swig as filter import random, cmath, time class test_mpsk_receiver(gr_unittest.TestCase): def setUp(self): self.tb = gr.top_block() def tearDown(self): self.tb = None def test01(self): # Test BPSK sync M = 2 theta = 0 loop_bw = cmath.pi/100.0 fmin = -0.5 fmax = 0.5 mu = 0.5 gain_mu = 0.01 omega = 2 gain_omega = 0.001 omega_rel = 0.001 self.test = digital.mpsk_receiver_cc(M, theta, loop_bw, fmin, fmax, mu, gain_mu, omega, gain_omega, omega_rel) data = 10000*[complex(1,0), complex(-1,0)] #data = [2*random.randint(0,1)-1 for x in xrange(10000)] self.src = gr.vector_source_c(data, False) self.snk = gr.vector_sink_c() # pulse shaping interpolation filter nfilts = 32 excess_bw = 0.35 ntaps = 11 * int(omega*nfilts) rrc_taps0 = filter.firdes.root_raised_cosine( nfilts, nfilts, 1.0, excess_bw, ntaps) rrc_taps1 = filter.firdes.root_raised_cosine( 1, omega, 1.0, excess_bw, 11*omega) self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0) self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1) self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk) self.tb.run() expected_result = [0.5*d for d in data] dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 1000 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp-1:-1] dst_data = dst_data[len_d - Ncmp:] #for e,d in zip(expected_result, dst_data): # print "{0:+.02f} {1:+.02f}".format(e, d) self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1) def test02(self): # Test QPSK sync M = 4 theta = 0 loop_bw = cmath.pi/100.0 fmin = -0.5 fmax = 0.5 mu = 0.5 gain_mu = 0.01 omega = 2 gain_omega = 0.001 omega_rel = 0.001 self.test = digital.mpsk_receiver_cc(M, theta, loop_bw, fmin, fmax, mu, gain_mu, omega, gain_omega, omega_rel) data = 10000*[complex( 0.707, 0.707), complex(-0.707, 0.707), complex(-0.707, -0.707), complex( 0.707, -0.707)] data = [0.5*d for d in data] self.src = gr.vector_source_c(data, False) self.snk = gr.vector_sink_c() # pulse shaping interpolation filter nfilts = 32 excess_bw = 0.35 ntaps = 11 * int(omega*nfilts) rrc_taps0 = filter.firdes.root_raised_cosine( nfilts, nfilts, 1.0, excess_bw, ntaps) rrc_taps1 = filter.firdes.root_raised_cosine( 1, omega, 1.0, excess_bw, 11*omega) self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0) self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1) self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk) self.tb.run() expected_result = 10000*[complex(-0.5, +0.0), complex(+0.0, -0.5), complex(+0.5, +0.0), complex(+0.0, +0.5)] # get data after a settling period dst_data = self.snk.data()[200:] # Only compare last Ncmp samples Ncmp = 1000 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp - 1:-1] dst_data = dst_data[len_d - Ncmp:] #for e,d in zip(expected_result, dst_data): # print "{0:+.02f} {1:+.02f}".format(e, d) self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1) if __name__ == '__main__': gr_unittest.run(test_mpsk_receiver, "test_mpsk_receiver.xml")