#!/usr/bin/env python
#
# Copyright 2011-2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#


import random
import cmath

from gnuradio import gr, gr_unittest, digital, blocks


class test_clock_recovery_mm(gr_unittest.TestCase):

    def setUp(self):
        random.seed(0)
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    def test01(self):
        # Test complex/complex version
        omega = 2
        gain_omega = 0.001
        mu = 0.5
        gain_mu = 0.01
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_cc(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 100 * [complex(1, 1), ]
        self.src = blocks.vector_source_c(data, False)
        self.snk = blocks.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        # doesn't quite get to 1.0
        expected_result = 100 * [complex(0.99972, 0.99972)]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 30
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)

    def test02(self):
        # Test float/float version
        omega = 2
        gain_omega = 0.01
        mu = 0.5
        gain_mu = 0.01
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_ff(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 100 * [1, ]
        self.src = blocks.vector_source_f(data, False)
        self.snk = blocks.vector_sink_f()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 100 * [0.9997, ]  # doesn't quite get to 1.0
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 30
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 4)

    def test03(self):
        # Test complex/complex version with varying input
        omega = 2
        gain_omega = 0.01
        mu = 0.25
        gain_mu = 0.01
        omega_rel_lim = 0.0001

        self.test = digital.clock_recovery_mm_cc(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 1000 * [complex(1, 1), complex(1, 1),
                       complex(-1, -1), complex(-1, -1)]
        self.src = blocks.vector_source_c(data, False)
        self.snk = blocks.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 1000 * [complex(-1.2, -1.2), complex(1.2, 1.2)]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)

    def test04(self):
        # Test float/float version
        omega = 2
        gain_omega = 0.01
        mu = 0.25
        gain_mu = 0.1
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_ff(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 1000 * [1, 1, -1, -1]
        self.src = blocks.vector_source_f(data, False)
        self.snk = blocks.vector_sink_f()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 1000 * [-1.2, 1.2]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 1)


if __name__ == '__main__':
    gr_unittest.run(test_clock_recovery_mm)