/* -*- c++ -*- */ /* * Copyright 2006,2010-2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "costas_loop_cc_impl.h" #include <gnuradio/expj.h> #include <gnuradio/io_signature.h> #include <gnuradio/math.h> #include <gnuradio/sincos.h> #include <boost/format.hpp> namespace gr { namespace digital { costas_loop_cc::sptr costas_loop_cc::make(float loop_bw, int order, bool use_snr) { return gnuradio::get_initial_sptr(new costas_loop_cc_impl(loop_bw, order, use_snr)); } static int ios[] = { sizeof(gr_complex), sizeof(float), sizeof(float), sizeof(float) }; static std::vector<int> iosig(ios, ios + sizeof(ios) / sizeof(int)); costas_loop_cc_impl::costas_loop_cc_impl(float loop_bw, int order, bool use_snr) : sync_block("costas_loop_cc", io_signature::make(1, 1, sizeof(gr_complex)), io_signature::makev(1, 4, iosig)), blocks::control_loop(loop_bw, 1.0, -1.0), d_order(order), d_error(0), d_noise(1.0), d_phase_detector(NULL) { // Set up the phase detector to use based on the constellation order switch (d_order) { case 2: if (use_snr) d_phase_detector = &costas_loop_cc_impl::phase_detector_snr_2; else d_phase_detector = &costas_loop_cc_impl::phase_detector_2; break; case 4: if (use_snr) d_phase_detector = &costas_loop_cc_impl::phase_detector_snr_4; else d_phase_detector = &costas_loop_cc_impl::phase_detector_4; break; case 8: if (use_snr) d_phase_detector = &costas_loop_cc_impl::phase_detector_snr_8; else d_phase_detector = &costas_loop_cc_impl::phase_detector_8; break; default: throw std::invalid_argument("order must be 2, 4, or 8"); break; } message_port_register_in(pmt::mp("noise")); set_msg_handler(pmt::mp("noise"), boost::bind(&costas_loop_cc_impl::handle_set_noise, this, _1)); } costas_loop_cc_impl::~costas_loop_cc_impl() {} float costas_loop_cc_impl::phase_detector_8(gr_complex sample) const { /* This technique splits the 8PSK constellation into 2 squashed QPSK constellations, one when I is larger than Q and one where Q is larger than I. The error is then calculated proportionally to these squashed constellations by the const K = sqrt(2)-1. The signal magnitude must be > 1 or K will incorrectly bias the error value. Ref: Z. Huang, Z. Yi, M. Zhang, K. Wang, "8PSK demodulation for new generation DVB-S2", IEEE Proc. Int. Conf. Communications, Circuits and Systems, Vol. 2, pp. 1447 - 1450, 2004. */ float K = (sqrt(2.0) - 1); if (fabsf(sample.real()) >= fabsf(sample.imag())) { return ((sample.real() > 0 ? 1.0 : -1.0) * sample.imag() - (sample.imag() > 0 ? 1.0 : -1.0) * sample.real() * K); } else { return ((sample.real() > 0 ? 1.0 : -1.0) * sample.imag() * K - (sample.imag() > 0 ? 1.0 : -1.0) * sample.real()); } } float costas_loop_cc_impl::phase_detector_4(gr_complex sample) const { return ((sample.real() > 0 ? 1.0 : -1.0) * sample.imag() - (sample.imag() > 0 ? 1.0 : -1.0) * sample.real()); } float costas_loop_cc_impl::phase_detector_2(gr_complex sample) const { return (sample.real() * sample.imag()); } float costas_loop_cc_impl::phase_detector_snr_8(gr_complex sample) const { float K = (sqrt(2.0) - 1); float snr = abs(sample) * abs(sample) / d_noise; if (fabsf(sample.real()) >= fabsf(sample.imag())) { return ((blocks::tanhf_lut(snr * sample.real()) * sample.imag()) - (blocks::tanhf_lut(snr * sample.imag()) * sample.real() * K)); } else { return ((blocks::tanhf_lut(snr * sample.real()) * sample.imag() * K) - (blocks::tanhf_lut(snr * sample.imag()) * sample.real())); } } float costas_loop_cc_impl::phase_detector_snr_4(gr_complex sample) const { float snr = abs(sample) * abs(sample) / d_noise; return ((blocks::tanhf_lut(snr * sample.real()) * sample.imag()) - (blocks::tanhf_lut(snr * sample.imag()) * sample.real())); } float costas_loop_cc_impl::phase_detector_snr_2(gr_complex sample) const { float snr = abs(sample) * abs(sample) / d_noise; return blocks::tanhf_lut(snr * sample.real()) * sample.imag(); } float costas_loop_cc_impl::error() const { return d_error; } void costas_loop_cc_impl::handle_set_noise(pmt::pmt_t msg) { if (pmt::is_real(msg)) { d_noise = pmt::to_double(msg); d_noise = powf(10.0f, d_noise / 10.0f); } } int costas_loop_cc_impl::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { const gr_complex* iptr = (gr_complex*)input_items[0]; gr_complex* optr = (gr_complex*)output_items[0]; float* freq_optr = output_items.size() >= 2 ? (float*)output_items[1] : NULL; float* phase_optr = output_items.size() >= 3 ? (float*)output_items[2] : NULL; float* error_optr = output_items.size() >= 4 ? (float*)output_items[3] : NULL; gr_complex nco_out; std::vector<tag_t> tags; get_tags_in_range(tags, 0, nitems_read(0), nitems_read(0) + noutput_items, pmt::intern("phase_est")); for (int i = 0; i < noutput_items; i++) { if (!tags.empty()) { if (tags[0].offset - nitems_read(0) == (size_t)i) { d_phase = (float)pmt::to_double(tags[0].value); tags.erase(tags.begin()); } } nco_out = gr_expj(-d_phase); optr[i] = iptr[i] * nco_out; d_error = (*this.*d_phase_detector)(optr[i]); d_error = gr::branchless_clip(d_error, 1.0); advance_loop(d_error); phase_wrap(); frequency_limit(); if (freq_optr != NULL) freq_optr[i] = d_freq; if (phase_optr != NULL) phase_optr[i] = d_phase; if (error_optr != NULL) error_optr[i] = d_error; } return noutput_items; } void costas_loop_cc_impl::setup_rpc() { #ifdef GR_CTRLPORT // Getters add_rpc_variable(rpcbasic_sptr( new rpcbasic_register_get<costas_loop_cc, float>(alias(), "error", &costas_loop_cc::error, pmt::mp(-2.0f), pmt::mp(2.0f), pmt::mp(0.0f), "", "Error signal of loop", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable(rpcbasic_sptr( new rpcbasic_register_get<control_loop, float>(alias(), "frequency", &control_loop::get_frequency, pmt::mp(0.0f), pmt::mp(2.0f), pmt::mp(0.0f), "", "Frequency Est.", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable(rpcbasic_sptr( new rpcbasic_register_get<control_loop, float>(alias(), "phase", &control_loop::get_phase, pmt::mp(0.0f), pmt::mp(2.0f), pmt::mp(0.0f), "", "Phase Est.", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable(rpcbasic_sptr( new rpcbasic_register_get<control_loop, float>(alias(), "loop_bw", &control_loop::get_loop_bandwidth, pmt::mp(0.0f), pmt::mp(2.0f), pmt::mp(0.0f), "", "Loop bandwidth", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); // Setters add_rpc_variable(rpcbasic_sptr( new rpcbasic_register_set<control_loop, float>(alias(), "loop_bw", &control_loop::set_loop_bandwidth, pmt::mp(0.0f), pmt::mp(1.0f), pmt::mp(0.0f), "", "Loop bandwidth", RPC_PRIVLVL_MIN, DISPNULL))); #endif /* GR_CTRLPORT */ } } /* namespace digital */ } /* namespace gr */