#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_arg import eng_float, intx from argparse import ArgumentParser import sys import numpy try: from matplotlib import pyplot except ImportError: print("Error: could not from matplotlib import pyplot (http://matplotlib.sourceforge.net/)") sys.exit(1) class example_timing(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset, mode=0): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) gain = bw nfilts = 32 rrc_taps_rx = filter.firdes.root_raised_cosine( nfilts, sps * nfilts, 1.0, rolloff, ntaps * nfilts) data = 2.0 * numpy.random.randint(0, 2, N) - 1.0 data = numpy.exp(1j * poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.off = filter.mmse_resampler_cc(0.20, 1.0) if mode == 0: self.clk = digital.pfb_clock_sync_ccf(sps, gain, rrc_taps_rx, nfilts, nfilts // 2, 1) self.taps = self.clk.taps() self.dtaps = self.clk.diff_taps() self.delay = int(numpy.ceil(((len(rrc_taps) - 1) // 2 + (len(self.taps[0]) - 1) // 2) // float(sps))) + 1 self.vsnk_err = blocks.vector_sink_f() self.vsnk_rat = blocks.vector_sink_f() self.vsnk_phs = blocks.vector_sink_f() self.connect((self.clk, 1), self.vsnk_err) self.connect((self.clk, 2), self.vsnk_rat) self.connect((self.clk, 3), self.vsnk_phs) else: # mode == 1 mu = 0.5 gain_mu = bw gain_omega = 0.25 * gain_mu * gain_mu omega_rel_lim = 0.02 self.clk = digital.clock_recovery_mm_cc(sps, gain_omega, mu, gain_mu, omega_rel_lim) self.vsnk_err = blocks.vector_sink_f() self.connect((self.clk, 1), self.vsnk_err) self.vsnk_src = blocks.vector_sink_c() self.vsnk_clk = blocks.vector_sink_c() self.connect(self.src, self.rrc, self.chn, self.off, self.clk, self.vsnk_clk) self.connect(self.src, self.vsnk_src) def main(): parser = ArgumentParser(conflict_handler="resolve") parser.add_argument("-N", "--nsamples", type=int, default=2000, help="Set the number of samples to process [default=%(default)r]") parser.add_argument("-S", "--sps", type=int, default=4, help="Set the samples per symbol [default=%(default)r]") parser.add_argument("-r", "--rolloff", type=eng_float, default=0.35, help="Set the rolloff factor [default=%(default)r]") parser.add_argument("-W", "--bandwidth", type=eng_float, default=2 * numpy.pi / 100.0, help="Set the loop bandwidth (PFB) or gain (M&M) [default=%(default)r]") parser.add_argument("-n", "--ntaps", type=int, default=45, help="Set the number of taps in the filters [default=%(default)r]") parser.add_argument("--noise", type=eng_float, default=0.0, help="Set the simulation noise voltage [default=%(default)r]") parser.add_argument("-f", "--foffset", type=eng_float, default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%(default)r]") parser.add_argument("-t", "--toffset", type=eng_float, default=1.0, help="Set the simulation's timing offset [default=%(default)r]") parser.add_argument("-p", "--poffset", type=eng_float, default=0.0, help="Set the simulation's phase offset [default=%(default)r]") parser.add_argument("-M", "--mode", type=int, default=0, help="Set the recovery mode (0: polyphase, 1: M&M) [default=%(default)r]") args = parser.parse_args() # Adjust N for the interpolation by sps args.nsamples = args.nsamples // args.sps # Set up the program-under-test put = example_timing(args.nsamples, args.sps, args.rolloff, args.ntaps, args.bandwidth, args.noise, args.foffset, args.toffset, args.poffset, args.mode) put.run() if args.mode == 0: data_src = numpy.array(put.vsnk_src.data()[20:]) data_clk = numpy.array(put.vsnk_clk.data()[20:]) data_err = numpy.array(put.vsnk_err.data()[20:]) data_rat = numpy.array(put.vsnk_rat.data()[20:]) data_phs = numpy.array(put.vsnk_phs.data()[20:]) f1 = pyplot.figure(1, figsize=(12, 10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2, 2, 1) s1.plot(data_src.real, data_src.imag, "bo") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time delay = put.delay m = len(data_clk.real) s2 = f1.add_subplot(2, 2, 2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real[delay:], "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2, 2, 3) s3.plot(data_err, label="Error") s3.plot(data_rat, 'r', label="Update rate") s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") s3.set_ylim([-0.5, 0.5]) s3.legend() # Plot the clock recovery loop's error s4 = f1.add_subplot(2, 2, 4) s4.plot(data_phs) s4.set_title("Clock Recovery Loop Filter Phase") s4.set_xlabel("Samples") s4.set_ylabel("Filter Phase") diff_taps = put.dtaps ntaps = len(diff_taps[0]) nfilts = len(diff_taps) t = numpy.arange(0, ntaps * nfilts) f3 = pyplot.figure(3, figsize=(12, 10), facecolor='w') s31 = f3.add_subplot(2, 1, 1) s32 = f3.add_subplot(2, 1, 2) s31.set_title("Differential Filters") s32.set_title("FFT of Differential Filters") for i, d in enumerate(diff_taps): D = 20.0 * \ numpy.log10( 1e-20 + abs(numpy.fft.fftshift(numpy.fft.fft(d, 10000)))) s31.plot(t[i::nfilts].real, d, "-o") s32.plot(D) s32.set_ylim([-120, 10]) # If testing the M&M clock recovery loop else: data_src = numpy.array(put.vsnk_src.data()[20:]) data_clk = numpy.array(put.vsnk_clk.data()[20:]) data_err = numpy.array(put.vsnk_err.data()[20:]) f1 = pyplot.figure(1, figsize=(12, 10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2, 2, 1) s1.plot(data_src.real, data_src.imag, "o") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time s2 = f1.add_subplot(2, 2, 2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real, "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2, 2, 3) s3.plot(data_err) s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") pyplot.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass