/* -*- c++ -*- */ /* * Copyright 2016 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include <flat_fader_impl.h> namespace gr { namespace channels { flat_fader_impl::flat_fader_impl(unsigned int N, float fDTs, bool LOS, float K, int seed ) : seed_1((int)seed), dist_1(-M_PI, M_PI), rv_1( seed_1, dist_1 ), // U(-pi,pi) seed_2((int)seed+1), dist_2(0, 1), rv_2( seed_2, dist_2 ), // U(0,1) d_N(N), d_fDTs(fDTs), d_theta(rv_1()), d_theta_los(rv_1()), d_step( powf(0.00125*fDTs, 1.1) ), // max step size approximated from Table 2 d_m(0), d_K(K), d_LOS(LOS), d_psi(d_N+1, 0), d_phi(d_N+1, 0), d_table(8*1024), scale_sin(sqrtf(1.0/d_N)), scale_los(sqrtf(d_K)/sqrtf(d_K+1)), scale_nlos(1/sqrtf(d_K+1)) { // generate initial phase values for(int i=0; i<d_N+1; i++){ d_psi[i] = rv_1(); d_phi[i] = rv_1(); } } #if FASTSINCOS == 1 #define _GRFASTSIN(x) gr::fxpt::sin(gr::fxpt::float_to_fixed(x)) #define _GRFASTCOS(x) gr::fxpt::cos(gr::fxpt::float_to_fixed(x)) #elif FASTSINCOS == 2 #define _GRFASTSIN(x) d_table.sin(x) #define _GRFASTCOS(x) d_table.cos(x) #else #define _GRFASTSIN(x) sin(x) #define _GRFASTCOS(x) cos(x) #endif void flat_fader_impl::next_samples(std::vector<gr_complex> &Hvec, int n_samples){ Hvec.resize(n_samples); for(int i = 0; i < n_samples; i++){ gr_complex H(0,0); for(int n=1; n<d_N+1; n++){ float alpha_n = (2*M_PI*n - M_PI + d_theta)/(4*d_N); d_psi[n] = fmod(d_psi[n] + 2*M_PI*d_fDTs*_GRFASTCOS(alpha_n), 2*M_PI); d_phi[n] = fmod(d_phi[n] + 2*M_PI*d_fDTs*_GRFASTCOS(alpha_n), 2*M_PI); float s_i = scale_sin*_GRFASTCOS(d_psi[n]); float s_q = scale_sin*_GRFASTSIN(d_phi[n]); H += gr_complex(s_i, s_q); } if(d_LOS){ d_psi[0] = fmod(d_psi[0] + 2*M_PI*d_fDTs*_GRFASTCOS(d_theta_los), 2*M_PI); float los_i = scale_los*_GRFASTCOS(d_psi[0]); float los_q = scale_los*_GRFASTSIN(d_psi[0]); H = H*scale_nlos + gr_complex(los_i,los_q); } update_theta(); Hvec[i] = H; } } gr_complex flat_fader_impl::next_sample(){ std::vector<gr_complex> v(1); next_samples(v,1); return v[0]; } void flat_fader_impl::update_theta() { d_theta += (d_step*rv_2()); if(d_theta > M_PI){ d_theta = M_PI; d_step = -d_step; } else if(d_theta < -M_PI){ d_theta = -M_PI; d_step = -d_step; } } } /* namespace channels */ } /* namespace gr */