/* -*- c++ -*- */ /* * Copyright 2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include <flat_fader_impl.h> namespace gr { namespace channels { flat_fader_impl::flat_fader_impl(unsigned int N, float fDTs, bool LOS, float K, int seed ) : seed_1((int)seed), dist_1(-M_PI, M_PI), rv_1( seed_1, dist_1 ), // U(-pi,pi) seed_2((int)seed+1), dist_2(0, 1), rv_2( seed_2, dist_2 ), // U(0,1) d_N(N), d_fDTs(fDTs), d_theta(rv_1()), d_theta_los(rv_1()), d_step( powf(0.00125*fDTs, 1.1) ), // max step size approximated from Table 2 d_m(0), d_K(K), d_LOS(LOS), d_psi(d_N+1, 0), d_phi(d_N+1, 0), d_table(8*1024), scale_sin(sqrtf(2.0/d_N)), scale_los(sqrtf(d_K)/sqrtf(d_K+1)), scale_nlos(1/sqrtf(d_K+1)) { // generate initial phase values for(int i=0; i<d_N+1; i++){ d_psi[i] = rv_1(); d_phi[i] = rv_1(); } } gr_complex flat_fader_impl::next_sample(){ gr_complex H(0,0); for(int n=1; n<d_N; n++){ float alpha_n = (2*M_PI*n - M_PI + d_theta)/(4*d_N); #if FASTSINCOS == 1 float s_i = scale_sin*gr::fxpt::cos(gr::fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr::fxpt::cos(gr::fxpt::float_to_fixed(alpha_n))+d_psi[n+1])); float s_q = scale_sin*gr::fxpt::cos(gr::fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr::fxpt::sin(gr::fxpt::float_to_fixed(alpha_n))+d_phi[n+1])); #elif FASTSINCOS == 2 float s_i = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(alpha_n)+d_psi[n+1]); float s_q = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.sin(alpha_n)+d_phi[n+1]); #else float s_i = scale_sin*cos(2*M_PI*d_fDTs*d_m*cos(alpha_n)+d_psi[n+1]); float s_q = scale_sin*cos(2*M_PI*d_fDTs*d_m*sin(alpha_n)+d_phi[n+1]); #endif H += gr_complex(s_i, s_q); } if(d_LOS){ #if FASTSINCOS == 1 float los_i = gr::fxpt::cos(gr::fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr::fxpt::cos(gr::fxpt::float_to_fixed(d_theta_los)) + d_psi[0])); float los_q = gr::fxpt::sin(gr::fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr::fxpt::cos(gr::fxpt::float_to_fixed(d_theta_los)) + d_psi[0])); #elif FASTSINCOS == 2 float los_i = d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]); float los_q = d_table.sin(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]); #else float los_i = cos(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]); float los_q = sin(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]); #endif H = H*scale_nlos + gr_complex(los_i,los_q)*scale_los; } //out[i] = in[i]*H; d_m++; update_theta(); return H; } void flat_fader_impl::update_theta() { d_theta += (d_step*rv_2()); if(d_theta > M_PI){ d_theta = M_PI; d_step = -d_step; } else if(d_theta < -M_PI){ d_theta = -M_PI; d_step = -d_step; } } } /* namespace channels */ } /* namespace gr */