/* -*- c++ -*- */
/*
 * Copyright 2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include "fading_model_impl.h"
#include <gr_io_signature.h>
#include <iostream>

#include <boost/format.hpp>
#include <boost/random.hpp>

#include <gr_fxpt.h>
#include <sincostable.h>


// FASTSINCOS:  0 = slow native,  1 = gr_fxpt impl,  2 = sincostable.h
#define FASTSINCOS  2


namespace gr {
  namespace channels {
    
    fading_model::sptr
    fading_model::make( unsigned int N, float fDTs, bool LOS, float K, int seed )
    {
      return gnuradio::get_initial_sptr
	(new fading_model_impl( N, fDTs, LOS, K, seed));
    }

    // Block constructor
    fading_model_impl::fading_model_impl( unsigned int N, float fDTs, bool LOS, float K, int seed )
      : gr_sync_block("fading_model",
		       gr_make_io_signature(1, 1, sizeof(gr_complex)),
		       gr_make_io_signature(1, 1, sizeof(gr_complex))),
        seed_1((int)seed),
        dist_1(-M_PI, M_PI),
        rv_1( seed_1, dist_1 ), // U(-pi,pi)
        
        seed_2((int)seed+1),
        dist_2(0, 1),
        rv_2( seed_2, dist_2 ), // U(0,1)
        
        d_N(N),
        d_fDTs(fDTs),
        d_theta(rv_1()),
        d_theta_los(rv_1()),
        d_step( powf(0.00125*fDTs, 1.1) ),  // max step size approximated from Table 2
        d_m(0),
        d_K(K),
        d_LOS(LOS),
        
        d_psi(d_N+1, 0),
        d_phi(d_N+1, 0),
        
        d_table(8*1024),
        
        scale_sin(sqrtf(2.0/d_N)),
        scale_los(sqrtf(d_K)/sqrtf(d_K+1)),
        scale_nlos(1/sqrtf(d_K+1))
    {
        // generate initial phase values
        for(int i=0; i<d_N+1; i++){
            d_psi[i] = rv_1();
            d_phi[i] = rv_1();
        }
    }

    fading_model_impl::~fading_model_impl()
    {
    }

    void
    fading_model_impl::setup_rpc()
    {
#ifdef GR_CTRLPORT
    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >(
            alias(), "fDTs",
            &fading_model::fDTs,
            pmt::mp(0), pmt::mp(1), pmt::mp(0.01),
            "Hz*Sec", "normalized maximum doppler frequency (fD*Ts)",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));
    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >(
            alias(), "fDTs",
            &fading_model::set_fDTs,
            pmt::mp(0), pmt::mp(1), pmt::mp(0.01),
            "Hz*Sec", "normalized maximum doppler frequency (fD*Ts)",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));

    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >(
            alias(), "K",
            &fading_model::K,
            pmt::mp(0), pmt::mp(8), pmt::mp(4),
            "Ratio", "Rician factor (ratio of the specular power to the scattered power)",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));
    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >(
            alias(), "K",
            &fading_model::set_K,
            pmt::mp(0), pmt::mp(8), pmt::mp(4),
            "Ratio", "Rician factor (ratio of the specular power to the scattered power)",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));

    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >(
            alias(), "step",
            &fading_model::step,
            pmt::mp(0), pmt::mp(8), pmt::mp(4),
            "radians", "Maximum step size for random walk angle per sample",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));
    add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >(
            alias(), "step",
            &fading_model::set_step,
            pmt::mp(0), pmt::mp(1), pmt::mp(0.00001),
            "radians", "Maximum step size for random walk angle per sample",
            RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)));
#endif /* GR_CTRLPORT */
    }

    void 
    fading_model_impl::update_theta()
    {
        d_theta += (d_step*rv_2());
        if(d_theta > M_PI){
            d_theta = M_PI; d_step = -d_step;
        } else if(d_theta < -M_PI){
            d_theta = -M_PI; d_step = -d_step;
        }
    }

    int 
    fading_model_impl::work (int noutput_items,
        gr_vector_const_void_star &input_items,
        gr_vector_void_star &output_items)
    {
        const gr_complex* in = (const gr_complex*) input_items[0];
        gr_complex* out = (gr_complex*) output_items[0];

        for(int i=0; i<noutput_items; i++){
            gr_complex H(0,0);

            for(int n=1; n<d_N; n++){
                float alpha_n = (2*M_PI*n - M_PI + d_theta)/4*d_N;
#if FASTSINCOS == 1
                float s_i = scale_sin*gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(alpha_n))+d_psi[n+1]));
                float s_q = scale_sin*gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::sin(gr_fxpt::float_to_fixed(alpha_n))+d_phi[n+1]));
#elif FASTSINCOS == 2
                float s_i = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(alpha_n)+d_psi[n+1]);
                float s_q = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.sin(alpha_n)+d_phi[n+1]);

#else
                float s_i = scale_sin*cos(2*M_PI*d_fDTs*d_m*cos(alpha_n)+d_psi[n+1]);
                float s_q = scale_sin*cos(2*M_PI*d_fDTs*d_m*sin(alpha_n)+d_phi[n+1]);
#endif

                H += gr_complex(s_i, s_q);
            }

            if(d_LOS){
#if FASTSINCOS == 1
                float los_i = gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(d_theta_los)) + d_psi[0]));
                float los_q = gr_fxpt::sin(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(d_theta_los)) + d_psi[0]));
#elif FASTSINCOS == 2
                float los_i = d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]);
                float los_q = d_table.sin(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]);
#else
                float los_i = cos(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]);
                float los_q = sin(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]);
#endif

                H = H*scale_nlos + gr_complex(los_i,los_q)*scale_los;
                }

            out[i] = in[i]*H;
            d_m++;
            update_theta();

        }

        return noutput_items;
    }


  } /* namespace channels */
} /* namespace gr */