/* -*- c++ -*- */ /* * Copyright 2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "fading_model_impl.h" #include <gr_io_signature.h> #include <iostream> #include <boost/format.hpp> #include <boost/random.hpp> #include <gr_fxpt.h> #include <sincostable.h> // FASTSINCOS: 0 = slow native, 1 = gr_fxpt impl, 2 = sincostable.h #define FASTSINCOS 2 namespace gr { namespace channels { fading_model::sptr fading_model::make( unsigned int N, float fDTs, bool LOS, float K, int seed ) { return gnuradio::get_initial_sptr (new fading_model_impl( N, fDTs, LOS, K, seed)); } // Block constructor fading_model_impl::fading_model_impl( unsigned int N, float fDTs, bool LOS, float K, int seed ) : gr_sync_block("fading_model", gr_make_io_signature(1, 1, sizeof(gr_complex)), gr_make_io_signature(1, 1, sizeof(gr_complex))), seed_1((int)seed), dist_1(-M_PI, M_PI), rv_1( seed_1, dist_1 ), // U(-pi,pi) seed_2((int)seed+1), dist_2(0, 1), rv_2( seed_2, dist_2 ), // U(0,1) d_N(N), d_fDTs(fDTs), d_theta(rv_1()), d_theta_los(rv_1()), d_step( powf(0.00125*fDTs, 1.1) ), // max step size approximated from Table 2 d_m(0), d_K(K), d_LOS(LOS), d_psi(d_N+1, 0), d_phi(d_N+1, 0), d_table(8*1024), scale_sin(sqrtf(2.0/d_N)), scale_los(sqrtf(d_K)/sqrtf(d_K+1)), scale_nlos(1/sqrtf(d_K+1)) { // generate initial phase values for(int i=0; i<d_N+1; i++){ d_psi[i] = rv_1(); d_phi[i] = rv_1(); } } fading_model_impl::~fading_model_impl() { } void fading_model_impl::setup_rpc() { #ifdef GR_CTRLPORT add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >( alias(), "fDTs", &fading_model::fDTs, pmt::mp(0), pmt::mp(1), pmt::mp(0.01), "Hz*Sec", "normalized maximum doppler frequency (fD*Ts)", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >( alias(), "fDTs", &fading_model::set_fDTs, pmt::mp(0), pmt::mp(1), pmt::mp(0.01), "Hz*Sec", "normalized maximum doppler frequency (fD*Ts)", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >( alias(), "K", &fading_model::K, pmt::mp(0), pmt::mp(8), pmt::mp(4), "Ratio", "Rician factor (ratio of the specular power to the scattered power)", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >( alias(), "K", &fading_model::set_K, pmt::mp(0), pmt::mp(8), pmt::mp(4), "Ratio", "Rician factor (ratio of the specular power to the scattered power)", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_get<fading_model, float >( alias(), "step", &fading_model::step, pmt::mp(0), pmt::mp(8), pmt::mp(4), "radians", "Maximum step size for random walk angle per sample", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); add_rpc_variable( rpcbasic_sptr(new rpcbasic_register_set<fading_model, float >( alias(), "step", &fading_model::set_step, pmt::mp(0), pmt::mp(1), pmt::mp(0.00001), "radians", "Maximum step size for random walk angle per sample", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP))); #endif /* GR_CTRLPORT */ } void fading_model_impl::update_theta() { d_theta += (d_step*rv_2()); if(d_theta > M_PI){ d_theta = M_PI; d_step = -d_step; } else if(d_theta < -M_PI){ d_theta = -M_PI; d_step = -d_step; } } int fading_model_impl::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex* in = (const gr_complex*) input_items[0]; gr_complex* out = (gr_complex*) output_items[0]; for(int i=0; i<noutput_items; i++){ gr_complex H(0,0); for(int n=1; n<d_N; n++){ float alpha_n = (2*M_PI*n - M_PI + d_theta)/4*d_N; #if FASTSINCOS == 1 float s_i = scale_sin*gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(alpha_n))+d_psi[n+1])); float s_q = scale_sin*gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::sin(gr_fxpt::float_to_fixed(alpha_n))+d_phi[n+1])); #elif FASTSINCOS == 2 float s_i = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(alpha_n)+d_psi[n+1]); float s_q = scale_sin*d_table.cos(2*M_PI*d_fDTs*d_m*d_table.sin(alpha_n)+d_phi[n+1]); #else float s_i = scale_sin*cos(2*M_PI*d_fDTs*d_m*cos(alpha_n)+d_psi[n+1]); float s_q = scale_sin*cos(2*M_PI*d_fDTs*d_m*sin(alpha_n)+d_phi[n+1]); #endif H += gr_complex(s_i, s_q); } if(d_LOS){ #if FASTSINCOS == 1 float los_i = gr_fxpt::cos(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(d_theta_los)) + d_psi[0])); float los_q = gr_fxpt::sin(gr_fxpt::float_to_fixed(2*M_PI*d_fDTs*d_m*gr_fxpt::cos(gr_fxpt::float_to_fixed(d_theta_los)) + d_psi[0])); #elif FASTSINCOS == 2 float los_i = d_table.cos(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]); float los_q = d_table.sin(2*M_PI*d_fDTs*d_m*d_table.cos(d_theta_los) + d_psi[0]); #else float los_i = cos(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]); float los_q = sin(2*M_PI*d_fDTs*d_m*cos(d_theta_los) + d_psi[0]); #endif H = H*scale_nlos + gr_complex(los_i,los_q)*scale_los; } out[i] = in[i]*H; d_m++; update_theta(); } return noutput_items; } } /* namespace channels */ } /* namespace gr */