/* -*- c++ -*- */ /* * Copyright 2014 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gnuradio/io_signature.h> #include <volk/volk.h> #include "multiply_matrix_ff_impl.h" namespace gr { namespace blocks { const int multiply_matrix_ff::TPP_SELECT_BY_MATRIX = 999; const std::string multiply_matrix_ff::MSG_PORT_NAME_SET_A = "set_A"; multiply_matrix_ff::sptr multiply_matrix_ff::make(std::vector<std::vector<float> > A, gr::block::tag_propagation_policy_t tag_propagation_policy) { if (A.empty() || A[0].size() == 0) { throw std::invalid_argument("matrix A has invalid dimensions."); } return gnuradio::get_initial_sptr (new multiply_matrix_ff_impl(A, tag_propagation_policy)); } multiply_matrix_ff_impl::multiply_matrix_ff_impl(std::vector<std::vector<float> > A, gr::block::tag_propagation_policy_t tag_propagation_policy) : gr::sync_block("multiply_matrix_ff", gr::io_signature::make(A[0].size(), A[0].size(), sizeof(float)), gr::io_signature::make(A.size(), A.size(), sizeof(float))), d_A(A) { this->set_tag_propagation_policy(tag_propagation_policy); const int alignment_multiple = volk_get_alignment() / sizeof(float); set_alignment(std::max(1, alignment_multiple)); pmt::pmt_t port_name = pmt::string_to_symbol("set_A"); message_port_register_in(port_name); set_msg_handler( port_name, boost::bind(&multiply_matrix_ff_impl::msg_handler_A, this, _1) ); } multiply_matrix_ff_impl::~multiply_matrix_ff_impl() { } int multiply_matrix_ff_impl::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { for (size_t out_idx = 0; out_idx < output_items.size(); out_idx++) { float *out = reinterpret_cast<float *>(output_items[out_idx]); // Do input 0 first, this saves a memset const float *in = reinterpret_cast<const float *>(input_items[0]); volk_32f_s32f_multiply_32f(out, in, d_A[out_idx][0], noutput_items); // Then do inputs 1 through N for (size_t in_idx = 1; in_idx < input_items.size(); in_idx++) { in = reinterpret_cast<const float *>(input_items[in_idx]); // Yeah, this needs VOLK-ifying (TODO) for (int i = 0; i < noutput_items; i++) { out[i] += in[i] * d_A[out_idx][in_idx]; } } } if (d_tag_prop_select) { propagate_tags_by_A(noutput_items, input_items.size(), output_items.size()); } return noutput_items; } // Copy tags from input k to output l if A[l][k] is not zero void multiply_matrix_ff_impl::propagate_tags_by_A(int noutput_items, size_t ninput_ports, size_t noutput_ports) { std::vector<gr::tag_t> tags; for (size_t in_idx = 0; in_idx < ninput_ports; in_idx++) { get_tags_in_window( tags, in_idx, 0, noutput_items ); for (size_t out_idx = 0; out_idx < noutput_ports; out_idx++) { if (d_A[out_idx][in_idx] == 0) { continue; } for (size_t i = 0; i < tags.size(); i++) { add_item_tag(out_idx, tags[i]); } } } } // Check dimensions before copying bool multiply_matrix_ff_impl::set_A(const std::vector<std::vector<float> > &new_A) { if (d_A.size() != new_A.size()) { GR_LOG_ALERT(d_logger, "Attempted to set matrix with invalid dimensions."); return false; } for (size_t i = 0; i < d_A.size(); i++) { if (d_A[i].size() != new_A[i].size()) { GR_LOG_ALERT(d_logger, "Attempted to set matrix with invalid dimensions."); return false; } } d_A = new_A; return true; } void multiply_matrix_ff_impl::msg_handler_A(pmt::pmt_t A) { if (!pmt::is_vector(A) && !pmt::is_tuple(A)) { GR_LOG_ALERT(d_logger, "Invalid message to set A (wrong type)."); return; } if (pmt::length(A) != d_A.size()) { GR_LOG_ALERT(d_logger, "Invalid message to set A (wrong size)."); return; } std::vector<std::vector<float> > new_A(d_A); for (size_t i = 0; i < pmt::length(A); i++) { pmt::pmt_t row; if (pmt::is_vector(A)) { row = pmt::vector_ref(A, i); } else if (pmt::is_tuple(A)) { row = pmt::tuple_ref(A, i); } if (pmt::is_vector(row) || pmt::is_tuple(row)) { if (pmt::length(row) != d_A[0].size()) { GR_LOG_ALERT(d_logger, "Invalid message to set A (wrong number of columns)."); return; } for (size_t k = 0; k < pmt::length(row); k++) { new_A[i][k] = pmt::to_double(pmt::is_vector(row) ? pmt::vector_ref(row, k) : pmt::tuple_ref(row, k)); } } else if (pmt::is_f32vector(row)) { size_t row_len = 0; const float *elements = pmt::f32vector_elements(row, row_len); if (row_len != d_A[0].size()) { GR_LOG_ALERT(d_logger, "Invalid message to set A (wrong number of columns)."); return; } new_A[i].assign(elements, elements + row_len); } } if (!set_A(new_A)) { GR_LOG_ALERT(d_logger, "Invalid message to set A."); } } void multiply_matrix_ff_impl::set_tag_propagation_policy(gr::block::tag_propagation_policy_t tpp) { if (((int) tpp) == TPP_SELECT_BY_MATRIX) { set_tag_propagation_policy(TPP_DONT); d_tag_prop_select = true; } else { gr::block::set_tag_propagation_policy(tpp); d_tag_prop_select = false; } } } /* namespace blocks */ } /* namespace gr */