/* -*- c++ -*- */ /* * Copyright 2002,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef _GR_NCO_H_ #define _GR_NCO_H_ #include <vector> #include <gr_sincos.h> #include <cmath> #include <gr_complex.h> namespace gr { namespace blocks { /*! * \brief base class template for Numerically Controlled Oscillator (NCO) * \ingroup misc * * Calculate sine and cosine based on the current phase. This * class has multiple ways to calculate sin/cos and when * requensting a range will increment the phase based on a * frequency, which can be set using set_freq. Similar interfaces * to the fxpt_vco can also be used to set or adjust the current * phase. * * \sa fxpt_nco.h for fixed-point implementation. */ template<class o_type, class i_type> class nco { public: nco() : phase(0), phase_inc(0) {} virtual ~nco() {} //! Set the current phase \p angle in radians void set_phase(double angle) { phase = angle; } //! Update the current phase in radians by \p delta_phase void adjust_phase(double delta_phase) { phase += delta_phase; } //! angle_rate is in radians / step void set_freq(double angle_rate) { phase_inc = angle_rate; } //! angle_rate is a delta in radians / step void adjust_freq(double delta_angle_rate) { phase_inc += delta_angle_rate; } //! increment current phase angle void step() { phase += phase_inc; if(fabs (phase) > M_PI) { while(phase > M_PI) phase -= 2*M_PI; while(phase < -M_PI) phase += 2*M_PI; } } //! increment current phase angle n times void step(int n) { phase += phase_inc * n; if(fabs (phase) > M_PI) { while(phase > M_PI) phase -= 2*M_PI; while(phase < -M_PI) phase += 2*M_PI; } } //! units are radians / step double get_phase() const { return phase; } double get_freq() const { return phase_inc; } //! compute sin and cos for current phase angle void sincos(float *sinx, float *cosx) const; //! compute cos or sin for current phase angle float cos() const { return std::cos (phase); } float sin() const { return std::sin (phase); } //! compute a block at a time void sin(float *output, int noutput_items, double ampl = 1.0); void cos(float *output, int noutput_items, double ampl = 1.0); void sincos(gr_complex *output, int noutput_items, double ampl = 1.0); void sin(short *output, int noutput_items, double ampl = 1.0); void cos(short *output, int noutput_items, double ampl = 1.0); void sin(int *output, int noutput_items, double ampl = 1.0); void cos(int *output, int noutput_items, double ampl = 1.0); protected: double phase; double phase_inc; }; template<class o_type, class i_type> void nco<o_type,i_type>::sincos(float *sinx, float *cosx) const { gr_sincosf(phase, sinx, cosx); } template<class o_type, class i_type> void nco<o_type,i_type>::sin(float *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { output[i] = (float)(sin() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::cos(float *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++){ output[i] = (float)(cos() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::sin(short *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { output[i] = (short)(sin() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::cos(short *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { output[i] = (short)(cos() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::sin(int *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { output[i] = (int)(sin() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::cos(int *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { output[i] = (int)(cos() * ampl); step(); } } template<class o_type, class i_type> void nco<o_type,i_type>::sincos(gr_complex *output, int noutput_items, double ampl) { for(int i = 0; i < noutput_items; i++) { float cosx, sinx; sincos(&sinx, &cosx); output[i] = gr_complex(cosx * ampl, sinx * ampl); step(); } } } /* namespace blocks */ } /* namespace gr */ #endif /* _NCO_H_ */