/* -*- c++ -*- */ /* * Copyright 2004-2011,2013-2014 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "../audio_registry.h" #include "windows_source.h" #include <gnuradio/io_signature.h> #include <gnuradio/logger.h> #include <gnuradio/prefs.h> #include <fcntl.h> #include <stdio.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <boost/format.hpp> #include <cctype> #include <sstream> #include <stdexcept> namespace gr { namespace audio { // Currently this audio source will only support a single channel input at 16-bits. So a // stereo input will likely be turned into a mono by the wave mapper source::sptr windows_source_fcn(int sampling_rate, const std::string& device_name, bool) { return source::sptr(new windows_source(sampling_rate, device_name)); } static const double CHUNK_TIME = prefs::singleton()->get_double( "audio_windows", "period_time", 0.1); // 100 ms (below 3ms distortion will likely occur regardless of number of // buffers, will likely be a higher limit on slower machines) static const int nPeriods = prefs::singleton()->get_long( "audio_windows", "nperiods", 4); // 4 should be more than enough with a normal chunk time (2 will likely work as // well)... at 3ms chunks 10 was enough on a fast machine static const bool verbose = prefs::singleton()->get_bool("audio_windows", "verbose", false); static const std::string default_device = prefs::singleton()->get_string("audio_windows", "standard_input_device", "default"); static std::string default_device_name() { return (default_device == "default" ? "WAVE_MAPPER" : default_device); } windows_source::windows_source(int sampling_freq, const std::string device_name) : sync_block("audio_windows_source", io_signature::make(0, 0, 0), io_signature::make(1, 1, sizeof(float))), d_sampling_freq(sampling_freq), d_device_name(device_name.empty() ? default_device_name() : device_name), d_fd(-1), lp_buffers(0), d_chunk_size(0) { /* Initialize the WAVEFORMATEX for 16-bit, mono */ wave_format.wFormatTag = WAVE_FORMAT_PCM; wave_format.nChannels = 1; // changing this will require adjustments to the work routine. wave_format.wBitsPerSample = 16; // changing this will necessitate changing buffer type from short. wave_format.nSamplesPerSec = d_sampling_freq; // defined by flowgraph settings, but note that the microphone // will likely have a native sample rate that the audio system // may upsample to you desired rate, so check where the cutoff // ends up or check your control panel wave_format.nBlockAlign = wave_format.nChannels * (wave_format.wBitsPerSample / 8); wave_format.nAvgBytesPerSec = wave_format.nSamplesPerSec * wave_format.nBlockAlign; wave_format.cbSize = 0; d_chunk_size = (int)(d_sampling_freq * CHUNK_TIME); // Samples per chunk set_output_multiple(d_chunk_size); d_buffer_size = d_chunk_size * wave_format.nChannels * (wave_format.wBitsPerSample / 8); // room for 16-bit audio on one channel. gr::logger_ptr logger, debug_logger; if (open_wavein_device() < 0) { GR_LOG_ERROR(logger, boost::format("open_wavein_device() failed %s") % strerror(errno)); throw std::runtime_error("audio_windows_source:open_wavein_device() failed"); } else { GR_LOG_INFO(d_debug_logger, "Opened windows wavein device"); } lp_buffers = new LPWAVEHDR[nPeriods]; for (int i = 0; i < nPeriods; i++) { lp_buffers[i] = new WAVEHDR; LPWAVEHDR lp_buffer = lp_buffers[i]; lp_buffer->dwLoops = 0L; lp_buffer->dwFlags = 0; lp_buffer->dwBufferLength = d_buffer_size; lp_buffer->lpData = new CHAR[d_buffer_size]; MMRESULT w_result = waveInPrepareHeader(d_h_wavein, lp_buffer, sizeof(WAVEHDR)); if (w_result != 0) { GR_LOG_ERROR(logger, boost::format("Failed to waveInPrepareHeader %s") % strerror(errno)); throw std::runtime_error("open_wavein_device() failed"); } waveInAddBuffer(d_h_wavein, lp_buffer, sizeof(WAVEHDR)); } waveInStart(d_h_wavein); if (verbose) { GR_LOG_INFO( d_debug_logger, boost::format( "Initialized %1% %2% ms audio buffers, total memory used: %3$0.2f kiB") % (nPeriods) % (CHUNK_TIME * 1000) % ((d_buffer_size * nPeriods) / 1024.0)); } } windows_source::~windows_source() { // stop playback and set all buffers to DONE. waveInReset(d_h_wavein); // Now we can deallocate the buffers for (int i = 0; i < nPeriods; i++) { if (lp_buffers[i]->dwFlags & (WHDR_DONE | WHDR_PREPARED)) { waveInUnprepareHeader(d_h_wavein, lp_buffers[i], sizeof(WAVEHDR)); } else { } delete lp_buffers[i]->lpData; } /* Free the callback Event */ waveInClose(d_h_wavein); delete[] lp_buffers; } int windows_source::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { float *f0, *f1; DWORD dw_items = 0; while (!buffer_queue.empty()) { // Pull the next incoming buffer off the queue LPWAVEHDR next_header = buffer_queue.front(); // Convert and calculate the number of samples (might not be full) short* lp_buffer = (short*)next_header->lpData; DWORD buffer_length = next_header->dwBytesRecorded / sizeof(short); if (buffer_length + dw_items > noutput_items * output_items.size()) { // There's not enough output buffer space to send the whole input buffer // so don't try, just leave it in the queue // or else we'd have to track how much we sent etc // In theory we should never reach this code because the buffers should all be // sized the same return dw_items; } else { switch (output_items.size()) { case 1: // mono output f0 = (float*)output_items[0]; for (int j = 0; j < buffer_length; j++) { f0[dw_items + j] = (float)(lp_buffer[j]) / 32767.0; } dw_items += buffer_length; break; case 2: // stereo output (interleaved in the buffer) f0 = (float*)output_items[0]; f1 = (float*)output_items[1]; for (int j = 0; j < buffer_length / 2; j++) { f0[dw_items + j] = (float)(lp_buffer[2 * j + 0]) / 32767.0; f1[dw_items + j] = (float)(lp_buffer[2 * j + 1]) / 32767.0; } dw_items += buffer_length / 2; } buffer_queue.pop(); // Recycle the buffer next_header->dwFlags = 0; waveInPrepareHeader(d_h_wavein, next_header, sizeof(WAVEHDR)); waveInAddBuffer(d_h_wavein, next_header, sizeof(WAVEHDR)); } } return dw_items; } int windows_source::string_to_int(const std::string& s) { int i; std::istringstream(s) >> i; return i; } MMRESULT windows_source::is_format_supported(LPWAVEFORMATEX pwfx, UINT uDeviceID) { return (waveInOpen(NULL, // ptr can be NULL for query uDeviceID, // the device identifier pwfx, // defines requested format NULL, // no callback NULL, // no instance data WAVE_FORMAT_QUERY)); // query only, do not open device } bool windows_source::is_number(const std::string& s) { std::string::const_iterator it = s.begin(); while (it != s.end() && std::isdigit(*it)) ++it; return !s.empty() && it == s.end(); } UINT windows_source::find_device(std::string szDeviceName) { gr::logger_ptr logger, debug_logger; UINT result = -1; UINT num_devices = waveInGetNumDevs(); if (num_devices > 0) { // what the device name passed as a number? if (is_number(szDeviceName)) { // a number, so must be referencing a device ID (which incremement from zero) UINT num = std::stoul(szDeviceName); if (num < num_devices) { result = num; } else { GR_LOG_WARN(logger, boost::format("waveIn deviceID %d was not found, " "defaulting to WAVE_MAPPER") % num); result = WAVE_MAPPER; } } else { // device name passed as string for (UINT i = 0; i < num_devices; i++) { WAVEINCAPS woc; if (waveInGetDevCaps(i, &woc, sizeof(woc)) != MMSYSERR_NOERROR) { GR_LOG_ERROR(logger, boost::format("Could not retrieve wave out device " "capabilities for device %s") % strerror(errno)); return -1; } if (woc.szPname == szDeviceName) { result = i; } if (verbose) GR_LOG_INFO(d_debug_logger, boost::format("WaveIn Device %d: %s") % i % woc.szPname); } if (result == -1) { GR_LOG_INFO(d_debug_logger, boost::format("Warning: waveIn device '%s' was not found, " "defaulting to WAVE_MAPPER") % szDeviceName); result = WAVE_MAPPER; } } } else { GR_LOG_ERROR(logger, boost::format("No WaveIn devices present or accessible: %s") % strerror(errno)); } return result; } int windows_source::open_wavein_device(void) { UINT u_device_id; unsigned long result; gr::logger_ptr logger, debug_logger; /** Identifier of the waveform-audio output device to open. It can be either a device identifier or a handle of an open waveform-audio input device. You can use the following flag instead of a device identifier. WAVE_MAPPER The function selects a waveform-audio output device capable of playing the given format. */ if (d_device_name.empty() || default_device_name() == d_device_name) u_device_id = WAVE_MAPPER; else // The below could be uncommented to allow selection of different device handles // however it is unclear what other devices are out there and how a user // would know the device ID so at the moment we will ignore that setting // and stick with WAVE_MAPPER u_device_id = find_device(d_device_name); if (verbose) GR_LOG_INFO(d_debug_logger, boost::format("waveIn Device ID: %1%") % (u_device_id)); // Check if the sampling rate/bits/channels are good to go with the device. MMRESULT supported = is_format_supported(&wave_format, u_device_id); if (supported != MMSYSERR_NOERROR) { char err_msg[50]; waveInGetErrorText(supported, err_msg, 50); GR_LOG_INFO(d_debug_logger, boost::format("format error: %s") % err_msg); GR_LOG_ERROR(logger, boost::format( "Requested audio format is not supported by device driver: %s") % strerror(errno)); return -1; } // Open a waveform device for output using event callback. result = waveInOpen(&d_h_wavein, u_device_id, &wave_format, (DWORD_PTR)&read_wavein, (DWORD_PTR)&buffer_queue, CALLBACK_FUNCTION | WAVE_ALLOWSYNC); if (result) { GR_LOG_ERROR(logger, boost::format("Failed to open waveform output device: %s") % strerror(errno)); return -1; } return 0; } static void CALLBACK read_wavein( HWAVEIN hwi, UINT uMsg, DWORD_PTR dwInstance, DWORD_PTR dwParam1, DWORD_PTR dwParam2) { // Ignore WIM_OPEN and WIM_CLOSE messages if (uMsg == WIM_DATA) { if (!dwInstance) { gr::logger_ptr logger; GR_LOG_ERROR(logger, boost::format("callback function missing buffer queue: %s") % strerror(errno)); } LPWAVEHDR lp_wave_hdr = (LPWAVEHDR)dwParam1; // The new audio data boost::lockfree::spsc_queue<LPWAVEHDR>* q = (boost::lockfree::spsc_queue<LPWAVEHDR>*) dwInstance; // The buffer queue we assigned to the device to track the // buffers that need to be sent q->push(lp_wave_hdr); // Add the buffer to that queue } } } /* namespace audio */ } /* namespace gr */