/* -*- c++ -*- */ /* * Copyright 2004-2011,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "audio_registry.h" #include <alsa_source.h> #include <alsa_impl.h> #include <gr_io_signature.h> #include <gr_prefs.h> #include <stdio.h> #include <iostream> #include <stdexcept> namespace gr { namespace audio { AUDIO_REGISTER_SOURCE(REG_PRIO_HIGH, alsa)(int sampling_rate, const std::string &device_name, bool ok_to_block) { return source::sptr (new alsa_source(sampling_rate, device_name, ok_to_block)); } static bool CHATTY_DEBUG = false; static snd_pcm_format_t acceptable_formats[] = { // these are in our preferred order... SND_PCM_FORMAT_S32, SND_PCM_FORMAT_S16 }; #define NELEMS(x) (sizeof(x)/sizeof(x[0])) static std::string default_device_name() { return gr_prefs::singleton()->get_string("audio_alsa", "default_input_device", "hw:0,0"); } static double default_period_time() { return std::max(0.001, gr_prefs::singleton()->get_double("audio_alsa", "period_time", 0.010)); } static int default_nperiods() { return std::max(2L, gr_prefs::singleton()->get_long("audio_alsa", "nperiods", 4)); } // ---------------------------------------------------------------- alsa_source::alsa_source(int sampling_rate, const std::string device_name, bool ok_to_block) : gr_sync_block("audio_alsa_source", gr_make_io_signature(0, 0, 0), gr_make_io_signature(0, 0, 0)), d_sampling_rate(sampling_rate), d_device_name(device_name.empty() ? default_device_name() : device_name), d_pcm_handle(0), d_hw_params((snd_pcm_hw_params_t*)(new char[snd_pcm_hw_params_sizeof()])), d_sw_params((snd_pcm_sw_params_t*)(new char[snd_pcm_sw_params_sizeof()])), d_nperiods(default_nperiods()), d_period_time_us((unsigned int)(default_period_time() * 1e6)), d_period_size(0), d_buffer_size_bytes(0), d_buffer(0), d_worker(0), d_hw_nchan(0), d_special_case_stereo_to_mono(false), d_noverruns(0), d_nsuspends(0) { CHATTY_DEBUG = gr_prefs::singleton()->get_bool("audio_alsa", "verbose", false); int error; int dir; // open the device for capture error = snd_pcm_open(&d_pcm_handle, d_device_name.c_str(), SND_PCM_STREAM_CAPTURE, 0); if(error < 0){ fprintf(stderr, "audio_alsa_source[%s]: %s\n", d_device_name.c_str(), snd_strerror(error)); throw std::runtime_error("audio_alsa_source"); } // Fill params with a full configuration space for a PCM. error = snd_pcm_hw_params_any(d_pcm_handle, d_hw_params); if(error < 0) bail("broken configuration for playback", error); if(CHATTY_DEBUG) gri_alsa_dump_hw_params(d_pcm_handle, d_hw_params, stdout); // now that we know how many channels the h/w can handle, set output signature unsigned int umax_chan; unsigned int umin_chan; snd_pcm_hw_params_get_channels_min(d_hw_params, &umin_chan); snd_pcm_hw_params_get_channels_max(d_hw_params, &umax_chan); int min_chan = std::min(umin_chan, 1000U); int max_chan = std::min(umax_chan, 1000U); // As a special case, if the hw's min_chan is two, we'll accept // a single output and handle the demux ourselves. if(min_chan == 2) { min_chan = 1; d_special_case_stereo_to_mono = true; } set_output_signature(gr_make_io_signature(min_chan, max_chan, sizeof(float))); // fill in portions of the d_hw_params that we know now... // Specify the access methods we implement // For now, we only handle RW_INTERLEAVED... snd_pcm_access_mask_t *access_mask; snd_pcm_access_mask_t **access_mask_ptr = &access_mask; // FIXME: workaround for compiler warning snd_pcm_access_mask_alloca(access_mask_ptr); snd_pcm_access_mask_none(access_mask); snd_pcm_access_mask_set(access_mask, SND_PCM_ACCESS_RW_INTERLEAVED); // snd_pcm_access_mask_set(access_mask, SND_PCM_ACCESS_RW_NONINTERLEAVED); if((error = snd_pcm_hw_params_set_access_mask(d_pcm_handle, d_hw_params, access_mask)) < 0) bail("failed to set access mask", error); // set sample format if(!gri_alsa_pick_acceptable_format(d_pcm_handle, d_hw_params, acceptable_formats, NELEMS(acceptable_formats), &d_format, "audio_alsa_source", CHATTY_DEBUG)) throw std::runtime_error("audio_alsa_source"); // sampling rate unsigned int orig_sampling_rate = d_sampling_rate; if((error = snd_pcm_hw_params_set_rate_near(d_pcm_handle, d_hw_params, &d_sampling_rate, 0)) < 0) bail("failed to set rate near", error); if(orig_sampling_rate != d_sampling_rate){ fprintf(stderr, "audio_alsa_source[%s]: unable to support sampling rate %d\n", snd_pcm_name (d_pcm_handle), orig_sampling_rate); fprintf(stderr, " card requested %d instead.\n", d_sampling_rate); } /* * ALSA transfers data in units of "periods". * We indirectly determine the underlying buffersize by specifying * the number of periods we want (typically 4) and the length of each * period in units of time (typically 1ms). */ unsigned int min_nperiods, max_nperiods; snd_pcm_hw_params_get_periods_min(d_hw_params, &min_nperiods, &dir); snd_pcm_hw_params_get_periods_max(d_hw_params, &max_nperiods, &dir); //fprintf (stderr, "alsa_source: min_nperiods = %d, max_nperiods = %d\n", // min_nperiods, max_nperiods); unsigned int orig_nperiods = d_nperiods; d_nperiods = std::min(std::max (min_nperiods, d_nperiods), max_nperiods); // adjust period time so that total buffering remains more-or-less constant d_period_time_us = (d_period_time_us * orig_nperiods) / d_nperiods; error = snd_pcm_hw_params_set_periods(d_pcm_handle, d_hw_params, d_nperiods, 0); if(error < 0) bail("set_periods failed", error); dir = 0; error = snd_pcm_hw_params_set_period_time_near(d_pcm_handle, d_hw_params, &d_period_time_us, &dir); if(error < 0) bail("set_period_time_near failed", error); dir = 0; error = snd_pcm_hw_params_get_period_size(d_hw_params, &d_period_size, &dir); if(error < 0) bail("get_period_size failed", error); set_output_multiple(d_period_size); } bool alsa_source::check_topology(int ninputs, int noutputs) { // noutputs is how many channels the user has connected. // Now we can finish up setting up the hw params... unsigned int nchan = noutputs; int err; // Check the state of the stream // Ensure that the pcm is in a state where we can still mess with the hw_params snd_pcm_state_t state; state=snd_pcm_state(d_pcm_handle); if(state== SND_PCM_STATE_RUNNING) return true; // If stream is running, don't change any parameters else if(state == SND_PCM_STATE_XRUN) snd_pcm_prepare(d_pcm_handle); // Prepare stream on underrun, and we can set parameters; bool special_case = nchan == 1 && d_special_case_stereo_to_mono; if(special_case) nchan = 2; d_hw_nchan = nchan; err = snd_pcm_hw_params_set_channels(d_pcm_handle, d_hw_params, d_hw_nchan); if(err < 0) { output_error_msg("set_channels failed", err); return false; } // set the parameters into the driver... err = snd_pcm_hw_params(d_pcm_handle, d_hw_params); if(err < 0) { output_error_msg("snd_pcm_hw_params failed", err); return false; } d_buffer_size_bytes = d_period_size * d_hw_nchan * snd_pcm_format_size(d_format, 1); d_buffer = new char[d_buffer_size_bytes]; if(CHATTY_DEBUG) { fprintf(stdout, "audio_alsa_source[%s]: sample resolution = %d bits\n", snd_pcm_name(d_pcm_handle), snd_pcm_hw_params_get_sbits(d_hw_params)); } switch(d_format) { case SND_PCM_FORMAT_S16: if(special_case) d_worker = &alsa_source::work_s16_2x1; else d_worker = &alsa_source::work_s16; break; case SND_PCM_FORMAT_S32: if(special_case) d_worker = &alsa_source::work_s32_2x1; else d_worker = &alsa_source::work_s32; break; default: assert(0); } return true; } alsa_source::~alsa_source() { if(snd_pcm_state(d_pcm_handle) == SND_PCM_STATE_RUNNING) snd_pcm_drop(d_pcm_handle); snd_pcm_close(d_pcm_handle); delete [] ((char*)d_hw_params); delete [] ((char*)d_sw_params); delete [] d_buffer; } int alsa_source::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { assert((noutput_items % d_period_size) == 0); assert(noutput_items != 0); // this is a call through a pointer to a method... return (this->*d_worker)(noutput_items, input_items, output_items); } /* * Work function that deals with float to S16 conversion */ int alsa_source::work_s16(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { typedef gr_int16 sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 16-1); unsigned int nchan = output_items.size (); float **out = (float **)&output_items[0]; sample_t *buf = (sample_t *)d_buffer; int bi; unsigned int sizeof_frame = d_hw_nchan * sizeof (sample_t); assert(d_buffer_size_bytes == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if(!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for(unsigned int i = 0; i < d_period_size; i++) { for(unsigned int chan = 0; chan < nchan; chan++) { out[chan][i] = (float) buf[bi++] * scale_factor; } } return d_period_size; } /* * Work function that deals with float to S16 conversion * and stereo to mono kludge... */ int alsa_source::work_s16_2x1(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { typedef gr_int16 sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 16-1); float **out = (float**)&output_items[0]; sample_t *buf = (sample_t*)d_buffer; int bi; assert(output_items.size () == 1); unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer_size_bytes == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if(!read_buffer (buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for(unsigned int i = 0; i < d_period_size; i++) { int t = (buf[bi] + buf[bi+1]) / 2; bi += 2; out[0][i] = (float) t * scale_factor; } return d_period_size; } /* * Work function that deals with float to S32 conversion */ int alsa_source::work_s32(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { typedef gr_int32 sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 32-1); unsigned int nchan = output_items.size (); float **out = (float**)&output_items[0]; sample_t *buf = (sample_t*)d_buffer; int bi; unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer_size_bytes == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if(!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for(unsigned int i = 0; i < d_period_size; i++) { for(unsigned int chan = 0; chan < nchan; chan++) { out[chan][i] = (float) buf[bi++] * scale_factor; } } return d_period_size; } /* * Work function that deals with float to S32 conversion * and stereo to mono kludge... */ int alsa_source::work_s32_2x1(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { typedef gr_int32 sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 32-1); float **out = (float**)&output_items[0]; sample_t *buf = (sample_t*)d_buffer; int bi; assert(output_items.size () == 1); unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer_size_bytes == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if(!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for(unsigned int i = 0; i < d_period_size; i++) { int t = (buf[bi] + buf[bi+1]) / 2; bi += 2; out[0][i] = (float)t * scale_factor; } return d_period_size; } bool alsa_source::read_buffer(void *vbuffer, unsigned nframes, unsigned sizeof_frame) { unsigned char *buffer = (unsigned char*)vbuffer; while(nframes > 0) { int r = snd_pcm_readi (d_pcm_handle, buffer, nframes); if(r == -EAGAIN) continue; // try again else if(r == -EPIPE) { // overrun d_noverruns++; fputs("aO", stderr); if((r = snd_pcm_prepare (d_pcm_handle)) < 0) { output_error_msg("snd_pcm_prepare failed. Can't recover from overrun", r); return false; } continue; // try again } else if(r == -ESTRPIPE) { // h/w is suspended (whatever that means) // This is apparently related to power management d_nsuspends++; if((r = snd_pcm_resume (d_pcm_handle)) < 0) { output_error_msg ("failed to resume from suspend", r); return false; } continue; // try again } else if(r < 0) { output_error_msg("snd_pcm_readi failed", r); return false; } nframes -= r; buffer += r * sizeof_frame; } return true; } void alsa_source::output_error_msg(const char *msg, int err) { fprintf(stderr, "audio_alsa_source[%s]: %s: %s\n", snd_pcm_name(d_pcm_handle), msg, snd_strerror (err)); } void alsa_source::bail(const char *msg, int err) throw (std::runtime_error) { output_error_msg(msg, err); throw std::runtime_error("audio_alsa_source"); } } /* namespace audio */ } /* namespace gr */