/* -*- c++ -*- */ /* * Copyright 2004-2011,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "../audio_registry.h" #include "alsa_impl.h" #include "alsa_source.h" #include <gnuradio/io_signature.h> #include <gnuradio/prefs.h> #include <boost/format.hpp> #include <cstdio> #include <stdexcept> namespace gr { namespace audio { source::sptr alsa_source_fcn(int sampling_rate, const std::string& device_name, bool ok_to_block) { return source::sptr(new alsa_source(sampling_rate, device_name, ok_to_block)); } static bool CHATTY_DEBUG = false; static snd_pcm_format_t acceptable_formats[] = { // these are in our preferred order... SND_PCM_FORMAT_S32, SND_PCM_FORMAT_S16 }; #define NELEMS(x) (sizeof(x) / sizeof(x[0])) static std::string default_device_name() { return prefs::singleton()->get_string( "audio_alsa", "default_input_device", "default"); } static double default_period_time() { return std::max(0.001, prefs::singleton()->get_double("audio_alsa", "period_time", 0.010)); } static int default_nperiods() { return std::max(2L, prefs::singleton()->get_long("audio_alsa", "nperiods", 32)); } // ---------------------------------------------------------------- alsa_source::alsa_source(int sampling_rate, const std::string device_name, bool ok_to_block) : sync_block( "audio_alsa_source", io_signature::make(0, 0, 0), io_signature::make(0, 0, 0)), d_sampling_rate(sampling_rate), d_device_name(device_name.empty() ? default_device_name() : device_name), d_nperiods(default_nperiods()), d_period_time_us((unsigned int)(default_period_time() * 1e6)), d_special_case_stereo_to_mono(false) { CHATTY_DEBUG = prefs::singleton()->get_bool("audio_alsa", "verbose", false); int error; int dir; // open the device for capture snd_pcm_t* t = nullptr; error = snd_pcm_open(&t, d_device_name.c_str(), SND_PCM_STREAM_CAPTURE, 0); d_pcm_handle.set(t); if (error < 0) { GR_LOG_ERROR(d_logger, boost::format("[%1%]: %2%") % (d_device_name) % (snd_strerror(error))); throw std::runtime_error("audio_alsa_source"); } // Fill params with a full configuration space for a PCM. error = snd_pcm_hw_params_any(d_pcm_handle.get(), d_hw_params.get()); if (error < 0) bail("broken configuration for playback", error); if (CHATTY_DEBUG) gri_alsa_dump_hw_params(d_pcm_handle.get(), d_hw_params.get(), stdout); // now that we know how many channels the h/w can handle, set output signature unsigned int umax_chan; unsigned int umin_chan; snd_pcm_hw_params_get_channels_min(d_hw_params.get(), &umin_chan); snd_pcm_hw_params_get_channels_max(d_hw_params.get(), &umax_chan); int min_chan = std::min(umin_chan, 1000U); int max_chan = std::min(umax_chan, 1000U); // As a special case, if the hw's min_chan is two, we'll accept // a single output and handle the demux ourselves. if (min_chan == 2) { min_chan = 1; d_special_case_stereo_to_mono = true; } set_output_signature(io_signature::make(min_chan, max_chan, sizeof(float))); // fill in portions of the d_hw_params that we know now... // Specify the access methods we implement // For now, we only handle RW_INTERLEAVED... snd_pcm_access_mask_t* access_mask; snd_pcm_access_mask_t** access_mask_ptr = &access_mask; // FIXME: workaround for compiler warning snd_pcm_access_mask_alloca(access_mask_ptr); snd_pcm_access_mask_none(access_mask); snd_pcm_access_mask_set(access_mask, SND_PCM_ACCESS_RW_INTERLEAVED); // snd_pcm_access_mask_set(access_mask, SND_PCM_ACCESS_RW_NONINTERLEAVED); if ((error = snd_pcm_hw_params_set_access_mask( d_pcm_handle.get(), d_hw_params.get(), access_mask)) < 0) bail("failed to set access mask", error); // set sample format if (!gri_alsa_pick_acceptable_format(d_pcm_handle.get(), d_hw_params.get(), acceptable_formats, NELEMS(acceptable_formats), &d_format, "audio_alsa_source", CHATTY_DEBUG)) throw std::runtime_error("audio_alsa_source"); // sampling rate unsigned int orig_sampling_rate = d_sampling_rate; if ((error = snd_pcm_hw_params_set_rate_near( d_pcm_handle.get(), d_hw_params.get(), &d_sampling_rate, 0)) < 0) bail("failed to set rate near", error); if (orig_sampling_rate != d_sampling_rate) { GR_LOG_INFO(d_logger, boost::format("[%1%]: unable to support sampling rate %2%\n\tCard " "requested %3% instead.") % snd_pcm_name(d_pcm_handle.get()) % orig_sampling_rate % d_sampling_rate); } /* * ALSA transfers data in units of "periods". * We indirectly determine the underlying buffersize by specifying * the number of periods we want (typically 4) and the length of each * period in units of time (typically 1ms). */ unsigned int min_nperiods, max_nperiods; snd_pcm_hw_params_get_periods_min(d_hw_params.get(), &min_nperiods, &dir); snd_pcm_hw_params_get_periods_max(d_hw_params.get(), &max_nperiods, &dir); unsigned int orig_nperiods = d_nperiods; d_nperiods = std::min(std::max(min_nperiods, d_nperiods), max_nperiods); // adjust period time so that total buffering remains more-or-less constant d_period_time_us = (d_period_time_us * orig_nperiods) / d_nperiods; error = snd_pcm_hw_params_set_periods( d_pcm_handle.get(), d_hw_params.get(), d_nperiods, 0); if (error < 0) bail("set_periods failed", error); dir = 0; error = snd_pcm_hw_params_set_period_time_near( d_pcm_handle.get(), d_hw_params.get(), &d_period_time_us, &dir); if (error < 0) bail("set_period_time_near failed", error); dir = 0; error = snd_pcm_hw_params_get_period_size(d_hw_params.get(), &d_period_size, &dir); if (error < 0) bail("get_period_size failed", error); set_output_multiple(d_period_size); } alsa_source::~alsa_source() {} bool alsa_source::check_topology(int ninputs, int noutputs) { // noutputs is how many channels the user has connected. // Now we can finish up setting up the hw params... unsigned int nchan = noutputs; int err; // Check the state of the stream // Ensure that the pcm is in a state where we can still mess with the hw_params snd_pcm_state_t state; state = snd_pcm_state(d_pcm_handle.get()); if (state == SND_PCM_STATE_RUNNING) return true; // If stream is running, don't change any parameters else if (state == SND_PCM_STATE_XRUN) snd_pcm_prepare( d_pcm_handle.get()); // Prepare stream on underrun, and we can set parameters; bool special_case = nchan == 1 && d_special_case_stereo_to_mono; if (special_case) nchan = 2; d_hw_nchan = nchan; err = snd_pcm_hw_params_set_channels(d_pcm_handle.get(), d_hw_params.get(), d_hw_nchan); if (err < 0) { output_error_msg("set_channels failed", err); return false; } // set the parameters into the driver... err = snd_pcm_hw_params(d_pcm_handle.get(), d_hw_params.get()); if (err < 0) { output_error_msg("snd_pcm_hw_params failed", err); return false; } d_buffer.resize(d_period_size * d_hw_nchan * snd_pcm_format_size(d_format, 1)); if (CHATTY_DEBUG) { GR_LOG_DEBUG(d_logger, boost::format("[%1%]: sample resolution = %2% bits") % snd_pcm_name(d_pcm_handle.get()) % snd_pcm_hw_params_get_sbits(d_hw_params.get())); } switch (d_format) { case SND_PCM_FORMAT_S16: if (special_case) d_worker = &alsa_source::work_s16_2x1; else d_worker = &alsa_source::work_s16; break; case SND_PCM_FORMAT_S32: if (special_case) d_worker = &alsa_source::work_s32_2x1; else d_worker = &alsa_source::work_s32; break; default: assert(0); } return true; } int alsa_source::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { assert((noutput_items % d_period_size) == 0); assert(noutput_items != 0); // this is a call through a pointer to a method... return (this->*d_worker)(noutput_items, input_items, output_items); } /* * Work function that deals with float to S16 conversion */ int alsa_source::work_s16(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { typedef int16_t sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 16 - 1); unsigned int nchan = output_items.size(); float** out = (float**)&output_items[0]; sample_t* buf = reinterpret_cast<sample_t*>(d_buffer.data()); int bi; unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer.size() == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if (!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for (unsigned int i = 0; i < d_period_size; i++) { for (unsigned int chan = 0; chan < nchan; chan++) { out[chan][i] = (float)buf[bi++] * scale_factor; } } return d_period_size; } /* * Work function that deals with float to S16 conversion * and stereo to mono kludge... */ int alsa_source::work_s16_2x1(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { typedef int16_t sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 16 - 1); float** out = (float**)&output_items[0]; sample_t* buf = reinterpret_cast<sample_t*>(d_buffer.data()); int bi; assert(output_items.size() == 1); unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer.size() == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if (!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for (unsigned int i = 0; i < d_period_size; i++) { int t = (buf[bi] + buf[bi + 1]) / 2; bi += 2; out[0][i] = (float)t * scale_factor; } return d_period_size; } /* * Work function that deals with float to S32 conversion */ int alsa_source::work_s32(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { typedef int32_t sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 32 - 1); unsigned int nchan = output_items.size(); float** out = (float**)&output_items[0]; sample_t* buf = reinterpret_cast<sample_t*>(d_buffer.data()); int bi; unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer.size() == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if (!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for (unsigned int i = 0; i < d_period_size; i++) { for (unsigned int chan = 0; chan < nchan; chan++) { out[chan][i] = (float)buf[bi++] * scale_factor; } } return d_period_size; } /* * Work function that deals with float to S32 conversion * and stereo to mono kludge... */ int alsa_source::work_s32_2x1(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { typedef int32_t sample_t; // the type of samples we're creating static const float scale_factor = 1.0 / std::pow(2.0f, 32 - 1); float** out = (float**)&output_items[0]; sample_t* buf = reinterpret_cast<sample_t*>(d_buffer.data()); int bi; assert(output_items.size() == 1); unsigned int sizeof_frame = d_hw_nchan * sizeof(sample_t); assert(d_buffer.size() == d_period_size * sizeof_frame); // To minimize latency, return at most a single period's worth of samples. // [We could also read the first one in a blocking mode and subsequent // ones in non-blocking mode, but we'll leave that for later (or never).] if (!read_buffer(buf, d_period_size, sizeof_frame)) return -1; // No fixing this problem. Say we're done. // process one period of data bi = 0; for (unsigned int i = 0; i < d_period_size; i++) { int t = (buf[bi] + buf[bi + 1]) / 2; bi += 2; out[0][i] = (float)t * scale_factor; } return d_period_size; } bool alsa_source::read_buffer(void* vbuffer, unsigned nframes, unsigned sizeof_frame) { unsigned char* buffer = (unsigned char*)vbuffer; while (nframes > 0) { int r = snd_pcm_readi(d_pcm_handle.get(), buffer, nframes); if (r == -EAGAIN) continue; // try again else if (r == -EPIPE) { // overrun d_noverruns++; fputs("aO", stderr); if ((r = snd_pcm_prepare(d_pcm_handle.get())) < 0) { output_error_msg("snd_pcm_prepare failed. Can't recover from overrun", r); return false; } continue; // try again } #ifdef ESTRPIPE else if (r == -ESTRPIPE) { // h/w is suspended (whatever that means) // This is apparently related to power management d_nsuspends++; if ((r = snd_pcm_resume(d_pcm_handle.get())) < 0) { output_error_msg("failed to resume from suspend", r); return false; } continue; // try again } #endif else if (r < 0) { output_error_msg("snd_pcm_readi failed", r); return false; } nframes -= r; buffer += r * sizeof_frame; } return true; } void alsa_source::output_error_msg(const char* msg, int err) { GR_LOG_ERROR(d_logger, boost::format("[%1%]: %2%: %3%") % snd_pcm_name(d_pcm_handle.get()) % msg % snd_strerror(err)); } void alsa_source::bail(const char* msg, int err) { output_error_msg(msg, err); throw std::runtime_error("audio_alsa_source"); } } /* namespace audio */ } /* namespace gr */