# # Copyright 2005,2006,2012-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter from fm_emph import fm_deemph import math try: from gnuradio import analog except ImportError: import analog_swig as analog class wfm_rcv_pll(gr.hier_block2): def __init__(self, demod_rate, audio_decimation): """ Hierarchical block for demodulating a broadcast FM signal. The input is the downconverted complex baseband signal (gr_complex). The output is two streams of the demodulated audio (float) 0=Left, 1=Right. Args: demod_rate: input sample rate of complex baseband input. (float) audio_decimation: how much to decimate demod_rate to get to audio. (integer) """ gr.hier_block2.__init__(self, "wfm_rcv_pll", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(2, 2, gr.sizeof_float)) # Output signature bandwidth = 250e3 audio_rate = demod_rate / audio_decimation # We assign to self so that outsiders can grab the demodulator # if they need to. E.g., to plot its output. # # input: complex; output: float loop_bw = 2*math.pi/100.0 max_freq = 2.0*math.pi*90e3/demod_rate self.fm_demod = analog.pll_freqdet_cf(loop_bw, max_freq,-max_freq) # input: float; output: float self.deemph_Left = fm_deemph(audio_rate) self.deemph_Right = fm_deemph(audio_rate) # compute FIR filter taps for audio filter width_of_transition_band = audio_rate / 32 audio_coeffs = filter.firdes.low_pass(1.0 , # gain demod_rate, # sampling rate 15000 , width_of_transition_band, filter.firdes.WIN_HAMMING) # input: float; output: float self.audio_filter = filter.fir_filter_fff(audio_decimation, audio_coeffs) if 1: # Pick off the stereo carrier/2 with this filter. It attenuated 10 dB so apply 10 dB gain # We pick off the negative frequency half because we want to base band by it! ## NOTE THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO DEEMPHASIS stereo_carrier_filter_coeffs = \ filter.firdes.complex_band_pass(10.0, demod_rate, -19020, -18980, width_of_transition_band, filter.firdes.WIN_HAMMING) #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs) #print "stereo carrier filter ", stereo_carrier_filter_coeffs #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate # Pick off the double side band suppressed carrier Left-Right audio. It is attenuated 10 dB so apply 10 dB gain stereo_dsbsc_filter_coeffs = \ filter.firdes.complex_band_pass(20.0, demod_rate, 38000-15000/2, 38000+15000/2, width_of_transition_band, filter.firdes.WIN_HAMMING) #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs) #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs # construct overlap add filter system from coefficients for stereo carrier self.stereo_carrier_filter = \ filter.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs) # carrier is twice the picked off carrier so arrange to do a commplex multiply self.stereo_carrier_generator = blocks.multiply_cc(); # Pick off the rds signal stereo_rds_filter_coeffs = \ filter.firdes.complex_band_pass(30.0, demod_rate, 57000 - 1500, 57000 + 1500, width_of_transition_band, filter.firdes.WIN_HAMMING) #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs) #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs # construct overlap add filter system from coefficients for stereo carrier self.rds_signal_filter = \ filter.fir_filter_fcc(audio_decimation, stereo_rds_filter_coeffs) self.rds_carrier_generator = blocks.multiply_cc(); self.rds_signal_generator = blocks.multiply_cc(); self_rds_signal_processor = blocks.null_sink(gr.sizeof_gr_complex); loop_bw = 2*math.pi/100.0 max_freq = -2.0*math.pi*18990/audio_rate; min_freq = -2.0*math.pi*19010/audio_rate; self.stereo_carrier_pll_recovery = \ analog.pll_refout_cc(loop_bw, max_freq, min_freq); #self.stereo_carrier_pll_recovery.squelch_enable(False) #pll_refout does not have squelch yet, so disabled for now # set up mixer (multiplier) to get the L-R signal at baseband self.stereo_basebander = blocks.multiply_cc(); # pick off the real component of the basebanded L-R signal. The imaginary SHOULD be zero self.LmR_real = blocks.complex_to_real(); self.Make_Left = blocks.add_ff(); self.Make_Right = blocks.sub_ff(); self.stereo_dsbsc_filter = \ filter.fir_filter_fcc(audio_decimation, stereo_dsbsc_filter_coeffs) if 1: # send the real signal to complex filter to pick off the carrier and then to one side of a multiplier self.connect(self, self.fm_demod, self.stereo_carrier_filter, self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,0)) # send the already filtered carrier to the otherside of the carrier self.connect(self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1)) # the resulting signal from this multiplier is the carrier with correct phase but at -38000 Hz. # send the new carrier to one side of the mixer (multiplier) self.connect(self.stereo_carrier_generator, (self.stereo_basebander,0)) # send the demphasized audio to the DSBSC pick off filter, the complex # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier self.connect(self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1)) # the result is BASEBANDED DSBSC with phase zero! # Pick off the real part since the imaginary is theoretically zero and then to one side of a summer self.connect(self.stereo_basebander, self.LmR_real, (self.Make_Left,0)) #take the same real part of the DSBSC baseband signal and send it to negative side of a subtracter self.connect(self.LmR_real,(self.Make_Right,1)) # Make rds carrier by taking the squared pilot tone and multiplying by pilot tone self.connect(self.stereo_basebander,(self.rds_carrier_generator,0)) self.connect(self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1)) # take signal, filter off rds, send into mixer 0 channel self.connect(self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0)) # take rds_carrier_generator output and send into mixer 1 channel self.connect(self.rds_carrier_generator,(self.rds_signal_generator,1)) # send basebanded rds signal and send into "processor" which for now is a null sink self.connect(self.rds_signal_generator,self_rds_signal_processor) if 1: # pick off the audio, L+R that is what we used to have and send it to the summer self.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1)) # take the picked off L+R audio and send it to the PLUS side of the subtractor self.connect(self.audio_filter,(self.Make_Right, 0)) # The result of Make_Left gets (L+R) + (L-R) and results in 2*L # The result of Make_Right gets (L+R) - (L-R) and results in 2*R self.connect(self.Make_Left , self.deemph_Left, (self, 0)) self.connect(self.Make_Right, self.deemph_Right, (self, 1)) # NOTE: mono support will require variable number of outputs in hier_block2s # See ticket:174 in Trac database #else: # self.connect (self.fm_demod, self.audio_filter, self)