# # Copyright 2005,2007,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from fm_emph import fm_deemph import math try: from gnuradio import analog except ImportError: import analog_swig as analog class wfm_rcv(gr.hier_block2): def __init__ (self, quad_rate, audio_decimation): """ Hierarchical block for demodulating a broadcast FM signal. The input is the downconverted complex baseband signal (gr_complex). The output is the demodulated audio (float). Args: quad_rate: input sample rate of complex baseband input. (float) audio_decimation: how much to decimate quad_rate to get to audio. (integer) """ gr.hier_block2.__init__(self, "wfm_rcv", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature volume = 20. max_dev = 75e3 fm_demod_gain = quad_rate/(2*math.pi*max_dev) audio_rate = quad_rate / audio_decimation # We assign to self so that outsiders can grab the demodulator # if they need to. E.g., to plot its output. # # input: complex; output: float self.fm_demod = analog.quadrature_demod_cf(fm_demod_gain) # input: float; output: float self.deemph = fm_deemph(audio_rate) # compute FIR filter taps for audio filter width_of_transition_band = audio_rate / 32 audio_coeffs = filter.firdes.low_pass(1.0, # gain quad_rate, # sampling rate audio_rate/2 - width_of_transition_band, width_of_transition_band, filter.firdes.WIN_HAMMING) # input: float; output: float self.audio_filter = filter.fir_filter_fff(audio_decimation, audio_coeffs) self.connect (self, self.fm_demod, self.audio_filter, self.deemph, self)